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PREFACE

This report is the second of two reports concerned with the

development and application of improved techniques of digital signal

processing based on the use of residue number systems and systolic

array architectures to implement the processing functions associated

with isolated-word speech recognition. It constitutes final docu-

mentation, for fiscal year 1985, on MITRE Mission Oriented Investi-

gation and Experimentation (MOIE) Project 7440: Advanced Architec-

tures for Signal Processors. The work was soonsored by the Rome Air

Development Center, RADC/OCTS, under contract Fl9628-84-C-0001.
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SECTION 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

The Advanced Architectures for Signal Processors project

continues to apply residue number system (RNS) techniques to the

practical design of advanced digital signal processors. We are

developing algorithms, computational techniques, and systolic archi-

tectures to be implemented in custom-design, very large scale inte-

grated (VLSI) electronics.

In conjunction with MITRE's Integrated Electronics and Mathema-

tical Research projects, we have been exploring opportunities for

improved implementation of digital signal processing functions

fostered by VLSI hardware design combining RNS computation with

systolic architectures, i.e., arrays of identical pipelined pro-

cessors using nearest-neighbor communication.

1.2 BACKGROUND

In FY84 and continuing into FY85, we explored the use of RNS

for implementing the computationally intensive processing functions

associated with speech recognition. Algorithms for word recognition

require three essential processes: (1) generation of a test pattern,

or spectrogram, to efficiently describe an utterance; (2) computa-

tion of a measure of the distortion between segments of spoken and

referenced utterances; and (3) dynamic programming to effect regis-

tration between utterances that differ because of local time expan-

sions and contractions, i.e., dynamic time-warping (DTW).

1_M
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These processing functions can impose an enormous burden for a

processor employing a large reference vocabulary (several hundred

words). If performed sequentially, conventional signal processing

cannot achieve real-time operation for normal speaking rates of a

few words per second. The combination of RNS and systolic archi-

tectures can reduce the otherwise large hardware complexity and

increase the throughput sufficiently enough to achieve real-time

recognition rates.

Residue number systems are well suited for implementing linear

processes composed of multiplication and addition in low-complexity

hardware, especially when the computational result can be confined

to a small range. On the. other hand, RNS is usually unsuitable for

nonlinear operations, and division or magnitude comparison generally

requires reconversion to a weighted number system.

In speech recognition, the distortion computations, largely

multiply-and-accumulate operations dependent on the chosen measure,

must be performed for every compared pair of test and reference

segments. RNS is useful for this situation. The dynamic program-

ming step, however, requires local magnitude comparisons for the

accumulated distortion of a (conceptual) least-distortion path

traversing an array of distortion values that compare different time

segments of a test and reference utterance pair. Maqnitude compari-

sons are awkward for RNS, but if the cumulative local path differ-

ences are small enough they can be contained within the range of a

single modulus. The entire RNS is used to accumulate the total path

cost for comparison with path costs of other utterance pairs.

Occasional local overflow of the chosen modulus probably does not

harm the path-cost computation.

2



Confining the distortion computation's dynamic range is neces-

sary to successfully employ RNS for DTW. Because an RNS needs no

allowance for local overflow of summed products, it has a dynamic

range advantage over conventional multiply-and-accumulate

computation representations. However, the gross dynamic range of

the distortion computation must be confined to maintain realistic

hardware complexity for parallel, pipelined operation in a few VLSI

circuits.

1.2.1 Previous Results

In FY84, we found RNS techniques effective for computations

used in word recognition processors. Using computer simulation, we

developed a design model for a word recognition system employing

autocorrelation analysis of segmented speech to calculate linear

predictive coding (LPC) distortion-value inputs to a dynamic-

programming algorithm for nonlinear time-warping. We identified

systolic architectures for the key processing steps. Incorporating

distortion computations with path-metric computations in.a pipelined

two-dimensional systolic array provided a high throughput for the

most computationally intensive part of the recognition algorithm.

The results were documented in an earlier project report [i].

While we were convinced by our results that RNS implementation

had high potential for speech recognition, we were also convinced

that substantial reduction of the gross dynamic range of the distor-

tion computations (without sacrificing discrimination ability) would

be required before RNS implementation could be accepted as a practi-

cal alternative to conventional architectures. This mandated a

3
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-e,ssessnt of the distortion function supporting the DTW computa-

t' ons. A particularly perplexing fact was that the path-metric

computations could be successfully carried out with coarse quantiza-
tion of the distortion values while computing our RNS implementation

of the LPC distortion oetric required a much larger range, even

though RNS reduced the range requirement somewhat.

1.2.2 Distortion Function Alternatives

From our point of view, not only must the distortion measure

produce satisfactory discrimination in a narrow range of values, it

also must be suitable for RNS computations. For speech recognition,

the purpose of the spectral analysis and distortion computation is

to distill the information contained in the speech waveform into a

small set of data suitable for low-error discrimination between

distinct word patterns, and not necessarily to preserve information

needed for high-grade speech synthesis. Thus, the LPC methods could

be unnecessarily stringent for speech recognition, while admittedly

weak in the presence of noise, and at the same time could impose the

need for high-precision, i.e., large dynamic-range, computations.

Contemporary speech research rejects traditional squared Eucli-

dean distance or equivalently mean-squared error as a distortion

measure on the grounds that it is not sufficiently meaningful to

represent what are considered requirements of auditory perception.

The ear needs only to recognize the random process producing a wave-

form to within some degree of accuracy and does not need to have an

accurate reproduction of the specific waveform. Demanding a small

mean-squared error in a speech system requires more bits and

accuracy than the human ear requires for intelligible speech.

.



The success of LPC methods can be attributed to the correspond-

ing distortion measures (such as maximum likelihood) that assess, in

a probabilistic sense, the similarity between original and repro-

duced processes or models rather than the actual waveforms. In our

previous work, we accepted this rationale.

Mean-squared error, however, cannot be rejected on the grounds

that it is too forgiving. We realized that if we were to base our

analysis on power spectra or on autocorrelation analysis, then

Euclidean distance would still be useful to discriminate spectral

patterns for automatic word recognition. For RNS implementation, we

preferred squared Euclidean distance, because it avoids explicit

sign detection that would require exiting RNS.

The square-law behavior of the distortion function at first

seemed an obstacle to reducing the dynamic range, but we realized we

could quantize the distortion values to just a few levels and still

maintain a good discrimination ability. This suggested that we

could scale down the input values to keep within a practical range.

We considered two methods of using squared Euclidean distance for

RNS distortion computation, log spectral deviation and direct auto-

correlation analysis.

Log Spectral Deviation

One of the oldest distortion measures proposed for speech is

the LP norm of the difference of the logarithms of the power

spectra. Assuming the spectral envelopes have been sampled and

scaled logarithmically, the L2 norm is simply the square root of the

squared Euclidean distance between the vectors of logarithmic

spectral samples. One of the traditional ways to provide the

5
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spectral envelopes is through a bank of constant-Q filters appro-

priately spaced across the speech spectrum. The output of each

filter's power is sampled in time and scaled logarithmically.

Such a filter bank probably is best implemented with analog-

sampled, switched-capacitor active filters rather than with digital

filters. Thus, we did not consider using RNS for the filter bank

but would convert the log-spectral samples to RNS code for computa-

tion of the squared Euclidean distortion in a systolic array.

Another means considered for performing the filter-bank analy-

sis was to take a discrete Fourier transform (DFT) of the windowed

speech samples with a moderately high resolution (perhaps 256 to

1024 samples per frame), subdivide the samples into appropriate

bands, compute the power in each subband, and convert to logarithmic

form. With the exception of logarithmic conversion, all of the

processing could be carried out with RNS.
.41

Logarithmic conversion requires reconversion to a weighted

number system (probably needed anyway for spectral normalization)

followed by reconversion to RNS for the distortion computation.

These processing steps are more complicated than the computation of

the autocorrelation samples in the already-developed linear systolic

array architecture. The operations, however, are performed only

once for each test segment.

Direct Correlation Analysis

Alternatively, the autocorrelation coefficients of the windowed

speech samples could be transformed by a DFT to provide a represen-

tation of the spectral envelope. We thought, however, that it might

6



be better to use the coefficients directly for spectral discrimina-

tion. While LPC analysis approximates the spectral envelope as

represented by the all-pole linear filter model, it is essentially a

linear transformation of a subset of autocorrelation coefficients.

The autoregressive nature of the all-pole model allows this

subset of autocorrelation values to approximate the remaining val-

ues. This is the basis for obtaining a good spectral approximation.

If the all-pole model is adequate for speech, then it should be

satisfactory for automatic word recognition to employ directly the

subset of autocorrelation coefficients used in LPC analysis in a

squared Euclidean distance computation. Since it would be appro-

priate to work with normalized correlation coefficients for RNS L

implementation, it would be necessary to exit RNS to carry out the

normalization and then reconvert to RNS for the distance computa-

tions. Such a technique for distortion computation is simpler to

implement than either the log spectral deviation or LPC distortion,

and there is no need to solve the normal equations for construction

of the reference library as in the LPC method.

1.3 SUMMARY OF NEW RESULTS

In FY85 we examined experimentally the direct autocorrelation

method by computer simulation using an expanded data base. We

concluded that it has the desired effect of dramatically reducing

the computation's range. Our simulations show a reduction from an

equivalent of 30-bit distortion samples to about 9 bits.

4'4"
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At the same time, we found that the reduced range can be used

to reduce the quantization of the input speech samples, and this

suggests an additive noise tolerance that we would not expect for

the LPC method. We studied the implications of the Euclidean

distortion metric on the RNS systolic array implementation of the

DTW algorithm and found considerable opportunity for hardware

simplification resulting from a reduced range and a simpler

algorithm.

We also developed a simplified method for quantizing the RNS

representation of distortion values to a smaller range using a

partial mixed-radix conversion that establishes natural quantization

boundaries. These simplifications permit the distortion computa-

tions and nubsequent quantization to be performed easily in the same

pipelined array used for DTW.

The net result of our work is confidence in an RNS implementa-

tion of an effective word recognition algorithm in a systolic archi-

tecture. This architecture is of low complexity and high through-

put, and iq a strong candidate for VLSI implementation.

The processing system studied and simulated is illustrated by

the block diagram of figure 1.1. The first processor block applies

some preprocessing functions to the digitized test speech, but not

in RNS. The autocorrelation analysis is performed in RNS, using a

modified version of a linear systolic array previously designed for

transversal filtering by the staff of MITRE's Integrated Electronics

project. The output of this processing block is a set of normalized

correlation samples. The normalization is carried out by a

8
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of reference words. Most of the processing occurs in the DTW pro-

cessing block. Included in this processor are the Euclidean

distance distortion computations, mixed-radix quantization, and

dynamic programming computations needed to determine the minimum

cost path.

*-3 00

(180 SAMPLES) (60 x 60 GRID)
8 TO 10-BIT

TEST(1
SAMPLEVL SEGMENT DYNAMIC TIME DECISION

EXTRACTION AUTOCORRELATION WARPING
AND ANALYSIS COMPUTATIONS

WINDOWING

REFERENCE LIBRARY

L OF STORED
AUTOCORRELATION

SAMPLES

Figure 1.1. RNS-Based Word Recognition

1.4 SCOPE

Section 2 of the report discusses the various processing and

Algorithmic steps, with RNS computation assumed. Section 3 presents

the results of simulation of the RNS algorithm. Section 4 discusses

an RNS implementation in a systolic array architecture. The results

are summarized in section 5.
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SECTION 2

PROCESSING FUNCTIONS FOR AN RNS WORD RECOGNITION SYSTEM

Figure 2.1. is a schematic diagram of a DTW-based word recogni-

tion system [2,3]. A detected test input utterance (a word to be

matched to one contained in a reference library of stored utteran-

ces) is analyzed in short blocks of overlapping segments or frames.

From each frame a vector of autocorrelation coefficients is compu-

ted. Segmentation into short blocks allows the process to be viewed

as locally stationary, the time variation being accommodated by the

sequential processing of overlapping analysis segments. It is

assumed that a similar analysis has been performed on the utterances

contained in the reference library. Autocorrelation vectors are

compared to produce a local measure of distortion between individual

segments of the test utterance and those of one of the reference

utterances.

If there are n segments of the test utterance and m segments of

the reference utterance, then the local distortions define a two-

dimensional grid of n x m distortion values based on an appropriate

distance metric. The low values correspond to good matches between

analysis segments, and the high values correspond to poor matches.

The purpose of the DTW algorithm [2,3] is to effect time registra-

tion between the stored reference and test segments to compensate

for local time expansion or contraction of the test utterance with .

respect to the reference. It is a dynamic programming alqorithm

that calculates the accumulated weighted distortions for the

%
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least-cost path through the grid of distortion values. This score

for the comnparison of utterances is normalized and then comupared in

magnitude with the normalized scores for other pairings to produce a

final decision.

[A- 73 010

AUTOCOAETIO4 TEST UrTERANCE

TEST

AUTOCORELATION r

VECTORS r

REFERENCE S o i

LORARYF4A

Figure 2.1. Speech Recognition via Dynamic Time-Warping
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The local distortion computations, together with the path

computations, impose the greatest computational burden in the recog-

nition process. A local distortion must be computed for each

selected pair of test and reference frames. These computations must

be repeated for each reference utterance stored in the reference

library and used in the shortest-path computations to produce a set

of DTW scores from which the best match is determined. This compu-

tational bottleneck in the word recognition process can be impacted

by a combination of RNS computation and systolic array architecture.

2.1 PREPROCESSING OF THE SPEECH WAVEFORM

The word recognition process involves digital computations on

overlapping segments of the analog waveform. Preprocessing of the

speech signals is required to obtain the appropriate sampled (8 kHz)

digitized (16-bit) signals. Input processing of the speech wave-

forms and their A/D conversion are pictured in fiffure 2.2. Voice
.4-

signals are picked up by the microphone, amplified, and passed

through low-pass filters to remove frequency components above

4 kHz. After equalization to compensate for a finite sampling aper-

ture, the analog signals are converted to 16-bit digital samples at

an 8 kHz sampling rate by an A/D converter. Output from the A/D

converter is either stored in a designated file for future input,

or, in recognition mode, input directly to the word recognition

system.

U
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Figure 2.2. Input Speech Processing

Ii

2.2 UTTERANCE DETECTION AND INPUT QUANTIZATION

Detection of an utterance, as contrasted with a period of

silence, is regarded as a digital preprocessing function. In our :--

experimentation, we have based utterance detection on observation of

energy statistics. The procedure is pictured in figure 2.3. The

energy statistic is a measure of the short-time average signal .. -

energy minus the long-time (exponentially averaged) signal energy..-

14 %
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Three thresholds are set as shown in the figure. The beginning of

an utterance is detected if the energy statistic rises above the

START threshold atd remains above it until crossing the HIGH

threshold. The end of an utterance is detected if the energy

statistic falls below the END threshold and remains below it for at

least 150 ms. These events constitute a valid utterance detection

if the length from beginning to end is at least 240 ms.

IA-72.3681

ENERGY .
STATISTIC

HIGH
THRESOLD

/J

START _______

THRESHOLD

4 LESS THAN

END ___j__ _______________

THRESHOLD 
E

FALSE BEGINNING FALSE END
START OF END OF

UTTERANCE UTTERANCE

Figure 2.3. Utterance Detection
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The digitized output of the A/D converter (figure 2.2) consists

of 16-bit samples. Since 16 bits is more than is needed for

isolated word recognition, the input samples are quantized to a

smaller number of bits, usually 8 or 10, by truncation of the

low-order bits of the sample. Performance results for various input

cuantizations from 2 to 16 bits are reported in section 3.4.

2.3 PRE-EMPHASIS AND NORMALIZATION OF SPEECH SAMPLES

The N digitized samples of a detected utterance in the speech

input stream are normalized prior to analysis to render the analysis

insensitive to system gain variations. Prior to normalization,

however, pre-emphasis of the speech samples may be introduced if

desired. The first-order predictor pre-emphasis filter employed in

our experimental work is shown schematically in figure 2.4. The

first sample of the utterance is unchanged; each remaining sample of

the utterance is modified as shown by subtracting from it a constant

i times the preceding sample, where we set !L to the value 0.95.

Investigations of the effects of pre-emphasis on word recogni-

zability are reported in section 3.3.

Normalization of the speech samples is accomplished by

multiplying each sample by a constant related to the input

quantization and dividing the result by the RMS value of the N

samples of the utterance. This result is then clipped, if

necessary, so that the final integer value lies within the range

specified by the chosen input quantization. The constant employed

in the premultiplication of the samples is selected so that clipping

occurs occasionally but not frequently.

.
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Figure 2.4. Pre-Emphasis of Speech Samples

2.4 AUTOCORRELATION ANALYSIS OF UTTERANCES

The purpose of spectral analysis in a DTW-based word recogni-

tion system is to facilitate the evaluation of a local distortion

measure or distance function between selected pairs of reference

frame data and test frame data. In our earlier work [ 1] we chose a

17
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method of spectral analysis based upon LPC employing variants of the

Itakura-Saito distortion measure. This distortion function takes

- the form

dis = scalar + rjuj (1)

where the rj represent the calculated autocorrelation coefficients

for the test frame data, a short segment of the test utterance data,

and the uj represent the inverse correlation coefficients for a

stored reference frame [1). Unfortunately, the uj are typically

small fractional values that must be scaled up before conversion to

integers for RNS computation. Although the form of equation (1)

appears to be well-suited for RNS implementation, the required

scaling introduces difficulties. From our analysis [1] we expected

to require an RNS range of about 30 bits to contain this

computation. Simulation results for three RNS with respective

ranges of approximately 30, 29, and 28 bits showed corresponding

recognition error rates of 1.7%, 40%, and 100%. These results were

particularly perplexing in the light of our success in performing

the path computations using a coarse quantization of the distortion

function values. It did not seem reasonable to have to employ so

many bits to perform the distortion computation if almost all the

precision in the outcome was discarded in the coarse quantization

employed for the path computations.

In FY85, we replaced the LPC analysis with a simpler autocorre-

lation analysis based on the use of a squared Euclidean distance P"

metric (section 2.6). While the square-law behavior of this distor-

tion function poses some dynamic range problems, the realization

from our previous work that we can maintain good discrimination

18
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between similar and different words while quantizing the computed

distortion values to just two (or a few) levels suggests input quan-

tization as a means for restricting the RNS computations to a

practical range.

The correlation coefficients employed are those previously

calculated and employed for LPC analysis of the speech utterances.

Following detection, an utterance is divided into segments, or

frames, for short-time analysis. The segmentation used in our

experimental work is shown schematically in figure 2.5. We segment

each utterance into overlapping frames of 22.5 ms. of speech, with

an advance of 10 ms (overlap of 12.5 ms). Thus, each frame consists

of 180 samples (at an 8 kHz sample rate), with each frame advanced

by 80 samples over its predecessor.

For each frame of 180 samples we compute the P + 1 autocorrela-

tion coefficients defined as

179-j
rj I xixi+j (j = 0, 1, ... , P) (2)

i=0

where the components xi of the L-th windowed segment are defined

by

x i = wix8OL+i (i = 0, 1, ... , 179) (3)

19
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Figure 2.5. Segment Extraction and Windowing

and the wi are weights that depend upon the type of window used.

In all our work we employed a Hamming window. We generally chose

P - 12, but the effects of making other choices are reported in

section 3.5.

The same analysis is applied to both test and reference utter-

ances. The coefficients of (2) are normalized, scaled, and con-

verted to integers in RNS representation before computation of the

distortion function, as discussed in section 2.6.
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2.5 LIBRARY CONSTRUCTION

The change in method of spectral analysis from a full LPC-based

analysis to a simpler analysis based upon the squared Euclidean

distance of the autocorrelation coefficients simplifies the con-

struction of the reference library in training mode. It is not

necessary to compute and store the inverse correlation coefficients

of the reference frames. The data now appended to the reference

library for each utterance consist of the number of models (frames,

segments) characterizing the uttqrance, a pointer to the utterance

text string, and the models themselves. Each model (one per frame

or utterance segment) is a data structure consisting of the P + 1

autocorrelation coefficients and a pointer to the next model. The

coefficients are normalized, scaled, and represented by their resi-

dues modulo the n moduli of the chosen RNS before being stored in

the library.

2.6 SQUARED EUCLIDEAN DISTANCE FUNCTION

The evaluation of a local distortion function to measure the

degree of dissimilarity between a pair of reference and test frames

is the most computationally intensive calculation performed in a

DTW-based word recognition system. Hence it is the calculation

that potentially benefits most from an RNS implementation. However,

it is not sufficient that the computation consist mainly of addi- %

tions and multiplications to be well-suited for RNS implementation.

In an earlier phase of this study, the Itakura-Saito distortion

metric was employed for computing local distances between reference

and test frames. Even though the computation itself consisted

21
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chiefly of the calculation of a vector inner product, easily done in

RNS, an unacceptably large range was required for the RNS to contain

the calculation (chiefly the result of the large upscaling required

to convert the inverse correlation coefficients to integer form).

To prove practical and beneficial, an RNS implementation needs a

distortion metric that can be computed in RNS without requiring a

large dynamic range. In our recent work we successfully employed a

squared Euclidean distance metric that directly uses the autocorre-

lation coefficients of the test and reference utterances.

The Euclidean distance computation consists of three steps:

1. Normalize the correlation coefficients

rj' = rj/ro j = 0, i, ..., P

where P is the order of the autocorrelation model

2. Scale and convert to RNS representation

rji = fSrj'i (mod pi)  =

i = 1, 2, ... ,n

where fxj denotes rounding to the nearest integer, S is

the scale factor in use, and n is the number of moduli

comprising the RNS

22
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3. Compute the distortion value in RNS

p
di = (rji - uj )2  (mod pi) (i - 1, ... , n)

j=0

where di is the i-th component in the RNS representation

of the distortion value d; rji and uji are the

residues of the (normalized, scaled, and digitized) test

and reference correlation coefficients, respectively.

Scale factors 8, 16, and 32 have been employed in simulations.

Eight appears to be adequate for word recognition. With an input

quantization of 12 bits and a scale factor of 8, an RNS range of

1000, or around 10 bits, is adequate to contain the distortion

computation. This is a dramatic improvement over the 30 bits or

more we found necessary to contain the Itakura-Saito metric

calculation in our earlier work, and provides the key to a

successful implementation of this calculation in RNS. Results

concerning the determination of the RNS range are presented in

expanded form in section 3.2.

2.7 QUANTIZATION OF DISTORTION VALUES BY PARTIAL MIXED-RADIX
TRANSLATION

In (1], quantization of the distortion function values to a few

levels was necessary to carry out the shortest-path computations

without leaving RNS for magnitude comparisons. If the absolute

differences of cumulative distances are less than half the largest

modulus, then the magnitude comparisons can be made ir the channel

for the largest modulus and communicated to the remaining channels.
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In [1], we presented a somewhat complex algorithm for performing the

quantization by downscaling without leaving RNS. Now that the new ON

distortion measure based on squared Euclidean distance is to be

used, the range required for the distortion calculation is reduced

to around 9 or 10 bits, permitting use of a modest sized three-

modulus RNS. For such an RNS, an attractive alternative method for

quantization is offered by partial mixed-radix translation of the

distortion value residues.

The mixed-radix expression for an integer n represented in a

three-modulus RNS composed of moduli Pl, P2, and P3, is

n 2 n3P2P 1 + n2p I + ni (mod PIP2P3). (4)

If rl, r2, and r 3 are the residues of n ood Pt, P2, and P3

respectively, then

rl = n (mod pi) = nj
r 2 = n (mod P2) = (n2PI + nj) (mod P2) (5)
r 3 = n (mod P3) = (n3P 2P1 + n 2PI + nj) (mod P3)

so that

nl rlI '

n2 (pl- (r2 - rl)) (mod P2) (6)

n3 = ((plP2)- (r3 - n 2P 1 - r1 )) (mod P3)

gives the mixed-radix coefficients for n in terms of its residues.
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This representation leads to a very natural definition of thresholds

for quantization of the computed distortion values to two or three

levels with a minimum of co mutation required to perform the quanti-

zation.

As shown in figure 2.6, two-level quantization is achieved by

setting a threshold at pl. Distortion values less than P1 are

mapped to zero, and all others are mapped to 1. Three-level quanti-

zation is achieved by setting two thresholds, one at pl and the

other at PIP2.

For two-level quantization, d < PI implies that n2 = n 3 = 0.

From (5), we see that r2 = ri (mod P2) and r 3 = rl (mod P3)- No

calculation is required other than possible reductions of r, (mod

P2) and (mod P3). The values of n2 and n3 need not be known; all we

care about is whether they are zero or nonzero. The choice of P, as

threshold may, of course, be inappropriate, but can be adjusted by .'
the choice of the moduli set. Two-level auantization of the distor-
tion values has proven to be adequate for word recognition, as shown

by the simulation results in section 3.
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Figure 2.6. Quantization by Partial Mixed-Radix Conversion

Calculation of n2 is required for three-level quantization by

this scheme. Again, d < P1 can be detected by testing whether .,,
r= rl (mod P2) and r3 = rl (mod P3). To detect when p, < d <

PlP2, we have to distinguish the case (n2 = 0 and n3 =0) from the

case (n2 > 0 and n3 =0). This requires calculation of n2 by (6). 2

26
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This calculation is simplified if the moduli are chosen so that P,

1
(mod P2) = +1 , thus eliminating the multiplication by pl-I . The

determination of whether n3 is zero or nonzero can be simplified by

choosing the moduli so that pl (mod P3) = ± 1, eliminating the

multiplication by P, in (6). The vralue of n3 does not have to be

calculated; we need only determine whether or not r1 + n2PI = r 3

(mod P3)- In our simulations, quantization to three levels has been

less effective than quantization to two levels. The second

threshold does not seem to be very helpful in our method of word

recognition. Its principal effect is to increase the DTW scores of

mismatches which already have high scores. On the other hand, the

higher distortion values make a larger RNS necessary for the

shortest path computations and/or lead to an increase in the

frequency of overflow in these computations. These issues are

discussed further in section 3.8.

2.8 SHORTEST-PATH COMPUTATIONS

A DTW algorithm finds the shortest path through a grid of

points. Each point of the grid represents a matching of a selected

pair of short-time segments, or frames, of the unknown test pattern

and a given reference pattern. Associated with each grid point is a

value that is the calculated local distortion for the particular

match of test and reference frames represented by the point. Asso-

00 ciated with each path through the grid is a distance that is a

weighted sum of the local distortions for grid points lying on the

path. The output of the DTW algorithm is a score, the length of the

shortest path through the grid, representing the degree of dissimi-

larity between the matched patterns.

27
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Three functions are required for dynamic time-warping: con- "

struction of the DTW grid, the set of points (i(k),j(k)) on which A

the DTW path is permitted to lie; evaluation of a local distortion

measure for all points of the grid; and location of the shortest

path through the DTW grid from the point (1,1) to the point (m,n), .6

where m is the number of reference frames and n is the number of

test frames to be matched. The shortest-path algorithm is a special

case of dynamic programming [4]. In this section the determination

of the DTW grid point set, given the number of reference frames m,

the number of test frames n, and a set of local and global path

constraints, is described, and the calculations required for finding

the shortest path through the grid are derived for a particular

choice of local constraints. The unknown test utterance is always

assigned to the y-axis (vertical), and the reference utterance is

assigned to the x-axis (horizontal).

2.8.1 DTW Path Constraints

Initially, before application of any constraints, the DTW grid

(figure 2.7) consists of the m x n points (i,j), 1 < i < m,

1 < j < n. Each point (i,j) represents the matching of the i-th

reference frame against the j-th test frame. Certain matches and

sequences of matches, i.e. paths, may be unreasonable to make,

however, and should be ruled out in advance. Rules are adopted in a

speech recognition system to avoid such unreasonable paths and

pointless computation. The local and global path constraints define

these rules.
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Figure 2.7. Unconstrained DTW Grid *

Local path constraints specify the ways in which a particular ,;

path point (i(k),j(k)) can be reached from a preceding path point..:

(i(k - 1), j(k - 1)). In accordance with [3], we represent allowed

local paths by a set of productions from a regular grammar. A"-

production is a rule of the form i

P: (al,bll(a2,b2)...(aL,bL) (7)
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where L is the length of the production, and the (a,b) I's are seg-

ments in a sequence of local moves. All a's and b's and L are

assumed to be (small) nonnegative integers. Using a production, a

local path to the point (i(k),j(k)) can be traced backwards to the

point (i(k - 1), j(k - 1)) through L - 1 intermediate points:

k-th point: (i(k),j(k))

5 5

s-th intermediate point: (M(k) - at, j(k) - 7 bX)
X=1 t=a

L L

(k - 1)st point: (i(k - 1),j(k- 1)) = (i(k) - Y at, j(k) - Y bX)
X=I=

This representation of local path constraints provides a great

deal of flexibility in their choice. The left-hand side of figure

2.8 illustrates the type 3 constraints of [3], which are specified

by the four productions

PI: (1,0)(1,1)

P2: (1,0)(1,2)
P3: (1,1)
P4: (1,2)

These four productions define four distinct possible local paths to

a given point (i(k),j(k)) in the DTW Qrid, coming from the points

(ik) - 2, j(k) - 1), (i(k) - 2, j(k) - 2), (i(k) - 1, j(k) - 1),

and (i(k) - 1, j(k) - 2), respectively. The first two of these

local paths also pass through the intermediate point (i(k) - 1,

j(k)). Note that for any local path to be valid, its starting point

(i(k - 1), j(k - 1)) and its end point (i(k),j(k)) must belong to

the valid point set.
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Figure 2.8. Local Path Constraints

A zero value for an a (b) in a production implies that the

corresponding reference (test) frame is to be matched with more than

one test (reference) frame. A value greater than one, on the other

hand, results in one or more reference (test) frames being skipped

(not matched) altogether. Thus, paths P1 and P2 of the type 3 con-

straints allow a given test frame to be matched with more than one
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reference frame, while paths P2 and P4 permit the skipping of a test

frame. Under these constraints, each reference frame is used exact-

ly once. Corresponding to the type 3 constraints is a reflected

version, the type 3a constraints, shown in the right-half of figure

2.8. These are specified by the four productions

Pl: (0,1)(1,1)
P2: (0,1)(2,1)
P3: (1,1)
P4: (2,1)

For these constraints, paths P1 and P2 match a given reference frame

against more than one test frame, while paths P2 and P4 permit a

reference frame to be skipped, but each test frame is :.sed once and

only once.

While there is no apparent reason for claiming that one set of

constraints performs better than the other, it seems more natural to

require that each test frame be matched exactly once, while allowing

reference frames to be skipped or used more than once. Myers et

al. in effect tested both types (along with a number of other sets

of local constraints) by using the type 3 constraints but allowing 4.

the assignment of test and reference to the x- and y-axes to be

reversed. They found better results for the reversed case, which

corresponds to using the type 3a constraints. We used type 3a

constraints in all simulations reported in section 3.
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Associated with each local path to a grid point (i, j) is a path

cost that is a weighted sum of the local distortion values for grid

points passed through by the path. One of the simplest of weight

functions takes the form

w(k) = i(k) - i(k - 1). (8) U
For this weight function, used in all simulations reported in

section 3, the weight assigned to a local path is the distance

traversed in the reference direction, i.e., the sum of the a's in .M .

the production defining the local path. It is customary to divide

the weight equally among the segments forming the path. Thus, for

type 3 local constraints, this weight function assigns unit weiahts

to all path segments, whereas for the type 3a constraints a frac-

tional weight results for the segments of path P1.

Local constraints limit the valid point set making up the DTW

grid in the following manner. For each procedure P of a local con-

straint, let sum(a) denote the sum of all the a's and let sum(b)

denote the sum of all the b's. The slope of the local path is given

by the ratio sum(b)/sum(a). Let emax and emin denote the maxi-

mum and minimum slopes, respectively, obtained over all productions

comprising the local constraint. If we draw lines of slope emin

and emax through the endpoints (1,1) and (m,n), the resulting four

lines define a parallelogram in the initial DTW grid within which

all valid points must lie (see figure 2.9). Points intermediate to

local paths may lie outside this parallelogram, but the endpoints of

such paths must themselves lie on or within the parallelogram. In

figure 2.9 the parallelogram resulting from the type 3 constraints

of [3) is shown, drawn in solid lines, representinq ten reference

frames and eight test frames.
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Figure 2.9. Grid for Type 3 Local Constraints

Global path constraints were introduced by Sakoe and Chiba [2]

to further delimit the legal point set. These constraints take the

form

Ii(k) -j(k)~ < g (9)
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for some nonnegative integer g. They constrain the DTW path to lie

within a corridor of width 2g centered on a 45o diagonal through

the point (1,1). Of course, if Im - nj > g, then the endpoint (m,n) -
cannot satisfy the global constraint, and no legal DTW path can be

found. In addition to restricting where the path can lie, the

global constraint can be used to rule out altogether a search for I
the shortest path whenever the lengths of the test and reference

utterances are too dissimilar.

A choice of g= 0 permits no path unless n =m, in which case

all local paths must begin and end on the diagonal from (1,1) to

(m,m). The global constraint usually limits the DTW grid by cutting

off the interior corners of the parallelogram defined by the local
constraints. In the example illustrated in figure 2.9, only the

lower right corner is cut off by the severe global constraint

g = 2. The resulting legal points comprising the DTW grid are shown

as solid grid points. The hollow or empty points lying outside the

parallelogram are intermediate points which may be passed through in

traversing certain local paths that begin and end in the legal point

set. The selected local distortion measure must be evaluated for

such intermediate points as well as for the points in the leqal 'I
set. A global constraint g = 9 has been employed for the simula-

tions reported in section 3, except for section 3.7, where larger

values have also been tried.

DTW grids from some simulations are shown in figure 2.10. For

the four examples shown, type 3a local constraints were applied,

with the global constraint set at g = 9. Single-threshold quantiza-

tion of distortion values to 0 or 1 was applied. Points lying out-

side the legal point set and the allowed set of intermediate points
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are filled with a solid square. Points belonging either to the

legal point set or the set of permitted intermediate points (border-

ing on the lower right-hand side of the legal set) are filled with a

solid star or asterisk if the corresponding quantized distortion

value is 1, and with a hollow star if the quantized distortion value

is 0.

Figure 2.10a shows the DTW grid obtained for matching two simi-

lar words, a testset "alpha" against a library reference "alpha." A

path with low cost can be found easily. The (normalized) DTW score

for this match is .054545.

Figures 2.10b (test = "bravo") and 2.10d (test = "delta") show

some similarity between the test pattern and the reference pattern

for "alpha," but clearly no path can be found with so low a cost as

in figure 2.10a. The resulting (normalized) DTW scores are .321429

for figure 2.10b ("bravo") and .327273 for figure 2.10d ("delta").

Figure 2.10c (test = "charlie") shows a very poor match between

test and reference patterns. The resulting (normalized) DIW score

is .821429.

2.8.2 DTW Path Computations

Dynamic time-warping for speech recognition was first formu-

lated as a problem in dynamic programming by Sakoe and Chiba [2].

The problem of finding the best path through the DTW grid reduces to

a special case of dynamic programming known as the shortest-route

problem. This problem can be stated briefly as follows: Given a

Connected graph with two distinguished nodes A and B and with a cost

associated with each arc from a node i to a node j of the graph,
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find the path, i.e., the sequence of arcs from A to B, whose summed

cost is a minimum. Algorithms for finding an optimal solution to

this problem were first given (independently) by Moore [5] and

Dantzig [6]. Subsequently, Bellman [7] formulated the

shortest-route problem as a dynamic programming problem.

The network, or graph, to which the shortest-route algorithm is

applied is defined as follows: Nodes of the graph correspond to

legal points of the DTW grid, with the grid point (1,1) as the node

A and the grid point (m,n) as the node B. The arc costs are defined

as weighted sums of local distortions obtained for matches of refer-

ence and test frames corresponding to grid points from node i to

node J. For the type 3 local constraints and the weight function

defined in equation (8), the costs defined for arcs of the network

derived from the DTW grid have the form

c(Pl) = c(P2) = di-l, j + dij
(10)

c(P3) = c(P4) = dij

where dij is the local distortion calculated between the ith

reference frame and the jth test frame.

The minimum cost, cij, for any path to the node (i,j) is corn-

puted (under type 3 constraints and weight function (8)) as

cij = Min (dij + ci_1,j_. , dij + ci_1,j- 2 ,

dij + di-l,j + ci-2,j - 1I dij + di-1,J + ci-2,j - 2) (11)
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where the first two terms of the minimization are the cost of reach-

ing (i,j) by local paths P3 and P4, and the latter two terms are the

cost of reaching (i,j) by local paths P1 and P2. Let

cij = dij + Min (ci_1,j I ,  ci_1,j_2
) .  (12)

Then

ci_j, j  = dil,j  + Min (ci_2,j1I,  ci_2,J_2) (13)

and

cij = Min (cij, dij + cil1,jl. (14)

cmn, the minimum cost for any path to node (m,n), is the score

returned by the DTW algorithm.

The shortest-path computation for type 3 local constraints and

weight function (8) can be summarized as follows:

1. Compute the local distortion dij from the test

frame correlation coefficients rn(j) and the

reference-frame correlation coefficients un(i)

2. Compute cij = dij + Min (ci1,jI , ciIj2
)

-S-S-
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3. Compute ci j = Mi (cij, dij + Ci-.,j)

We would like to employ RNS for step 1 because it is the most

computationally intensive calculation in a DTW-based word recogni-

tion system. The problem that arises with RNS is the magnitude

comparisons required for steps 2 and 3.

2.8.3 RNS Implementation of the Shortest-Path Computation

In order to make use of RNS for the local distortion calcula-

tions of a DTW algorithm, it is necessary to remain within RNS for

the entire DTW shortest-path computation, leaving RNS only to

convert the final score output by the algorithm for thresholding and

comparison with other scores to select the best ma.ch. As discussed

in section 2.8.2, solution of the shortest-path problem involves a

sequence of additions and magnitude comparisons. In general, magni-

tude comparisons cannot be performed efficiently within RNS.

However, the magnitudes being compared in the shortest-path computa-

tion may be similar. If their difference in absolute value does not

exceed half the largest modulus in use, then relative magnitude can

be determined without leaving RNS simply by testing the difference

modulo this largest modulus.

In (11 we reported that these differences were not small enough

to be contained within the range of a single modulus. However,

fbrther study showed that with suitable quantization of the local

distortion values the differences could be kept within the ranqe of

a single modulus. In particular, quantization of the local distor-

tion values to a single bit (*match" or "no-match") has proved very
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effective in our word recognition simulations. With quantization of

distortion values, the revised shortest-path computation is as

follows: -

1 Compute di j from rn(j) and un(i) .

2. Quantize to a single-bit d'ij : 0 = match, I = no-match

3. Compute cij = d'ij + Min(ci_1,j , ci-9-,j2)

4. Compute cij = Min(cij, d'ij + ci_1,j )

The effects of overflows in the path computations are examined

in section 3.8.

2.9 SELECTION OF THE WINNING TEXT

DTW scores calculated in RNS by the shortest-path algorithm are

reconverted from RNS to conventional arithmetic representation and

are normalized before deciding which is the winning text. Normali-

zation is necessary to adjust for differences in utterance length;

otherwise, reference texts with longer lengths tend to have larger

DTW scores and are less likely to be accepted as candidates or

winners than are shorter texts. The normalization factor used in

all simulations reported in section 3 is min(m,n), where m is the

number of reference frames and n is the number of test frames.

Under the weight function (8) and employing single-bit quantization r,

of distortion values, unnormalized DTW scores cannot exceed the IU

number of reference frames m. Normalization will make most

normalized DTW scores lie in the range 0 to 1, but when n < m, some

normalized scores can be greater than 1.
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After normalization of scores, the text with lowest score is

designated as the winning text. In the error analysis performed

subsequent to the simulations, an error is counted if this is not

the correct text of the test or if two different reference texts are

tied for lowest score....

-77
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SECTION 3

SIMULATION RESULTS

Results were obtained from many simulations performed to eval-

uate a DTW-based isolated word recognition system for which the

essential time-warping signal processing functions are implemented

in modular arithmetic. The database for building reference librar-

ies and supplying test inputs to the simulation runs is described in

section 3.1. Section 3 also describes the results of various

simulations performed to evaluate various choices and parameter

settings in the implementation design. The simulations discussed in

section 3.9 employ a different database called the "rhymes"

database, constructed for a study of word recognition when the

vocabulary contains similar sounding words.

3.1 SIMULATION TEST SET

In [1] we used a speech database consisting of single-speaker

utterances of eleven different words, the ten digits 0 - 9 plus

"oh." We felt confident that the recognition results obtained from

simulations using this database would be valid for larger databases,

expecting that matches of similar words, i.e., different productions

of the same word, would continue to exhibit low DTW scores relative

to matches of different words. Nonetheless, it seemed desirable to

repeat our simulation experiments on an expanded database in order

to gain further confidence in the validity of this expectation.

Therefore, the oriqinal test database was expanded by the addition

of the 26 communication code words for the letters A- Z, giving us

a vocabulary of 37 words. V
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Five different productions of the 37 words were recorded for

use in the construction of reference libraries employed in the simu-

lations. An additional sixth production of each word was recorded

for the test input signals used in the simulations. Table 3.1 lists

the 37 vocabulary words and shows the segment lengths of the six

productions for each word of the vocabulary. In all simulation runs

except those reported in section 3.7 the global constraint g was set

at 9. No DTW score was computed if the number of reference and test

frames differed by more than 9. This made some identifications

harder to make than others. For example, "five" and "three" of the

testset can be matched only with two correct members of the

reference library, whereas many test inputs can be matched with five

productions from the library. On the other hand, "foxtrot" cannot

be incorrectly identified, for the global constraint rules out any

matches between the test and an incorrect library utterance.

3.2 DETERMINATION OF THE RNS RANGE

A major breakthrough was achieved in FY85 in reducing the RNS

range required for implementation of a DTW-based isolated word

recognition system. Replacement of the Itakura-Saito distortion

metric by a squared Euclidean distance computation employing a

subset of the normalized autocorrelation coefficients of the test

and reference segments reduced the RNS range required for the

distortion computations from about 30 bits [1] to 9 or 10 bits, with

no increase in recognition error rate and with improved discri-

mination between DTW scores for correct and incorrect matches.
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Table 3. 1

Number of Segments Produced for Five Reference Productions
and One Testset Production by Utterance Database Segmentations

Word ProdnI Prodn2 Prodn3 Prodn4 Prodn5 Test

alpha 56 56 61 62 62 55
bravo 56 58 58 60 57 58
charlie 60 64 69 67 60 57
delta 58 51 53 56 54 55
echo 54 54 53 54 57 52
eight 56 53 50 54 47 50
five 78 67 82 82 82 72
four 59 60 58 58 61 55
foxtrot 91 103 101 103 104 99
golf 56 58 53 62 61 55
hotel 65 73 71 75 75 66
india 62 67 71 78 79 65
juliet 81 84 80 86 80 79
kilo 52 56 59 61 60 52
lima 55 58 62 62 58 58
mike 47 50 49 51 47 53
nine 62 60 57 56 61 60
november 75 77 76 78 75 73
oh 46 54 47 46 42 47
one 51 60 57 51 50 52
oscar 71 73 74 77 76 73
papa 57 64 78 71 64 57
quebec 58 62 66 69 64 67
romeo 77 70 71 70 68 69
seven 56 56 55 58 58 54
sierra 60 67 68 69 64 69
six 68 65 64 61 60 72
tango 64 69 67 66 68 6b
three 57 57 66 64 61 50
two 54 48 49 51 46 50
uniform 77 84 78 82 82 80
victor 57 66 67 68 71 66
whiskey 59 60 68 67 64 60
xray 64 67 70 67 65 63

. yankee 53 60 72 73 73 68
zero 53 59 57 67 61 57
zulu 61 63 61 64 63 58
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As discussed in section 2.6, the normalized correlation coeffi-

cients, lyina between +1 and -1, are scaled before conversion to

integers and RNS representation. Three scale factors were tried:

32, 16, and 8. For each scale factor, we computed histograms of the

distortion values resulting from running the word "alpha" against

the entire reference library. Plots of the resulting histograms are

shown in figure 3.1. These plots show that RNS with respective

ranges of 16000, 4000, and 1000 are adequate for containing the

local-distortion computations when the normalized correlation

coefficients are scaled by 32, 16, and 8, respectively. Since

scaling by 8 has been shown by e¥t ensive simulation to be adequate

for good discrimination between correct and incorrect word identifi-

cations, we have chosen 8 as our scale factor and used 8 in all

simulations reported in the remainder of section 3. For these

simulations we have employed two different 3-modulus RNS {23,11,21

with a range of 506, and {13,7,5} with a ranqe of 455. Both have

griven excellent word recognition results even with occasional

overflow of distortion values. We conclude that 9 bits are suffi-

cient for performing the souared Euclidean distortion computation in

RNS.

3.3 PRE-EMPHASIS OF SPEECH SAMPLES

To study the effects of pre-emphasis of the speech samples we

computed histograms of all normalized DTW scores produced by the

shortest-path algorithm during a complete simulation run of the

testset input against the stored reference library. The scores were

divided into two classes depending or whether similar words

(different productions of the same word) or different words

(different text values) were being matched. Plots of the histograms
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are shown in figures 3.2 (pre-emphasis applied to all speech

samples, with a = .95) and 3.3 (no pre-emphasis applied). The a and

b plots represent simulations for two distinct RNS: f23,11,21 and

(13,7,51 respectively. (Single-bit quantizaticn of distortion

values was used for all simulations. PORDER is the order P of the

autocorrelation model). The histogram heights represent the

percentage of all matches of similar words (different words) whose

normalized DTW scores fall into the respective classes 0, 0 to .1,

.1 to .2, ..., .9 to 1., and greater than 1. (Normalized DTW scores

> 1 result sometimes when the number of reference frames exceeds the

number of test frames. The normalization factor employed is

min(m,n).) Percentages have been rounded to the nearest integer

value before plotting, so that percentages less than .5 do not show.

Fiqure 3.2 illustrates why the DTW algorithm is working so well

in this implementation: there is excellent separation between the

scores for similar matches (correct identifications) and those for

different matches (incorrect identifications). In general, there

are several correct matches in the library for each test input, and

the best match is selected as the winning candidate. Decisions,

therefore, tend to be made at the left or low-end of the histoqram

of similar words where, in this case, there is no overlap with the

histogram of different words.

Comparison of figure 3.2 with figure 3.3 shows that pre-empha-

sis of the speech samples is helpful for better separation between

the DTW scores for matches of similar words and those for matches of

different words. For the simulation shown in figure 3.3b, a single pow

recognition error oc-urred (no errors for the other three cases);
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for the simulation shown in figure 3.2a, the smallest ratio of

lowest wrong score to lowest correct score exceeded 3.7. (This

ratio is < I if an error occurs.)

The difference between the a and b plots reflects the choice of

threshold. For the a plots, the quantization threshold is set

hiaher (relative to the RNS range) than for the b plots. This

results in lower DTW scores, both for similar and for different

matches, shifting both histograms to the left and, in the case of

10-bit input quantization, providing better separation. With a

coarser input quantization (< 10 bits), the lower setting of the

threshold for the b plots begins to give increasingly better perfor-

mance relative to the a plots.

3.4 INPUT QUANTIZATION

Although the A/D converters in our input preprocessing system

yield 16-bit speech samples, it has long been apparent to us that 16

bits are not necessary for acceptable word recognition. Among the

advantages of shorter samples is a reduction in the range needed for

autocorrelation analysis in RNS. However, since the autocorrelation

vectors are then normalized and scaled before the local distortion

computation, the rance needed for the latter is not affected.

We have looked at reducing the input guantization from 10 bits

to 8, 6, 4, 3, and 2, and also at increasinq it to 12 and 16. We

expected that a coarser input quantization, i.e., fewer sample bits,

would lead to lower distortion values, hence to lower DTW scores and

a left-shift of the score histograms. This is shown in the results

of the simulations. Pre-emphasis was employed in all simulations.

We report on a subset of the results.
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Plots for 8-bit input quantization are shown in figures 3.4a

(RNS f23,11,21) and 3.4b (RNS f13,7,51). Comparison with figures

3.2a and 3.2b for 10-bit quantization shows a slight shift of the

histograms to the left for the coarser input quantization, but no

apparent loss in discriminability between correct and incorrect

matches.

The picture changes somewhat when the quantization is reduced

to 6 bits. Again, the reduction in sample size results in a left-

shift of the histograms. For the RNS {13,7,31 (figure 3.5b) the

separation between scores for matches of similar words and matches

of different words remains good, but for the other RNS {23,11,2} the

natural threshold setting T = P, = 23 is now too high relative to

the reduced local distortion values and produces a considerable

overlap in the resulting DTW scores. Both simulations resulted in a

single recognition error, failing to distinguish *threen from *twon

(RNS f23,11,2); test = "three"), and "lima" from "tango* (RNS

(13,7,51; test = "lima"). In both cases, tie scores resulted.

Fiqure 3.6 shows histoqrams of DTW scores for 4-bit input quan-

tization. The overlaps of the histograms for different and similar

matches are now considerable, especially for the RNS f23,11,21.

This overlap leads to confusion in the word recognition process.

Figure 3.7 is a plot of the number of recognition errors

occurring versus the input quantization for allsimulation runs.

Two curves are drawn, one for the RNS f23,11,2 and one for the RNS

13, 7, 5. A recognition error is counted in the error analysis of a

simulation run whenever the selected text for identification of the

test input is incorrect or whenever there is a tie in DT1 scores

between the best guess and the next best guess.
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We have used two other types of recognition criteria for

comparing different simulation results. The first is called the

minimum discrimination ratio, rm. For each test utterance j we

define a test discrimination ratio, rj, by

rj 0 if wi = 0 or wj < cj (15)
wj/cj otherwise

where cj is the best DTW score for a reference with correct text

and wj is the best DTW score for a reference with incorrect text.

The minimum discrimination ratio is defined by

rm = Min rj. (16)

J

A plot of rm versus input quantization is given in figure 3.8.

Two curves are drawn, one for the RNS {23,11,2}, and one for the RNS

{13,7,51, showing the former gives better worst-case discrimination

if the sample size is adequate (8 bits or more). No meaningful

comparisons can be made when the quantization is 6 bits or less, so

the curves are plotted only for sample sizes greater than 6.
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The third criterion used is an ensemble discrimination ratio

re. Since some cj will be zero, we cannot define an average

discrimination ratio. The ensemble discrimination ratio is defined

by

re = ( 7 wj)/( 7 cj) (17)
J J

ignoring cases where no score is computed for a second-best text,

e.g., "foxtrot". Again, this statistic is not meaningful for sample

sizes less than 8 and has been plotted in figure 3.9 only for input

quantizations 8 to 16.

To summarize these results, the DTW score histograms show

excellent separation between scores for matches of similar words and

those for matches of different words so long as the input quantiza-

tion is adequate (8 bits or more). For coarser quantizations of the

speech samples the two histograms exhibit more serious overlaps,

giving rise to recognition errors (exceeding 10% for 2-bit quantiza-

tion and the RNS {13,7,51).

3.5 ORDER OF THE AUTOCORRELATION MODEL

The selection of the order of the autocorrelation model is

important. It should be set as small as is consistent with good A

recognition performance, for both the size of the reference library

and the time required for performing the local distortion calcula-

tion are approximately linear functions of the order P. In this

section, we report on the results of simulations carried out to

investigate the effects of changing P, i.e., PORDER. In general, as
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PORDER is decreased, local distortion values decrease and, hence,

the DTW scores are lower, shifting the histograms to the left.

Figure 3.2 showed the DTW score histoqrams produced when

PORDER - 12. Figures 3.10 through 3.13 show the effects upon the

histograms where PORDER changes from 12 to 10, 8, 6, and 4,

respectively. Figures 3.14 and 3.15 show the effects of increasing

PORDER to 16 and 20, respectively. For the RNS f13,7,5}, separation

between histograms for matches of similar words and matches of

different words is best for PORDER - 12, although separation deter-

iorates only slightly for PORDER - 10 and 8. For the RNS (23,11,21

separation is best for PORDER = 12 and PORDER = 20, but again the

overlaps for PORDER = 10 and 8 are small, and these appear to be

acceptable choices.

In the error analysis of the simulation runs, recognition

errors occurred only when PORDER = 4 for the RNS {23,11,2). For

this single case, three recognition errors were counted.

Figure 3.16 is a plot of rm versus PORDER. Two curves are

shown, for the RNS f23,11,21, and the RNS (13,7,51. This indicator

of worst-case performance is optimized for the choices PORDER - 12

and RNS f13,11,21. For the other RNS {13,7,51, rm is largest for

PORDER - 8.

Figure 3.17 shows plots of re versus PORDER for each of the

two RNS employed.
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To summarize these results, PORDER = 12 seems to give best

recognition results among the values tested, but 10 and 8 seem to be

adequate for good word recognizability. They also offer a savings

in library space, processing time, and the range required for the

autocorrelation analysis if done in RNS.

3.6 RECOGNITION PERFORMANCE IN NOISE

The RNS implementation of a DTW-based speech recognition system

performed well even for quite coarse speech input quantization

levels. This led us to consider whether this implementation might

perform well in the presence of additive noise in the speech

sample. To study the performance in a noisy environment, normally

distributed (zero-mean) noise random variables were added to the

test input speech samples following utterance detection.

3.6.1 Noise Model

Following detection of an utterance in the test speech input

data stream, the sample variance is calculated for the set of

samples comprising the utterance. This determines the noise stan-

dard deviation, 3n , used to obtain the desired signal-to-noise

ratio (SNR). Uniformly distributed inteqer variables are converted

to floating point representation and used to construct normally

distributed random variables, with zero mean and standard deviation

one, by means of Knuth's algorithm P [8]. Premultiplication by sn
yields normally distributed random variables with zero mean and

standard deviation, sn . These are added to the speech input

samples of the utterance, giving the desired SNR.

.
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If pre-emphasis is selected (not advisable when there is much

noise present), it is applied after the addition of the noise varia-

bles. Normalization of the test samples then proceeds, followed by

the usual autocorrelation analysis to produce the test autocorrela-

tion vectors used in the computation of local distortions.

3.6.2 Simulation Results

In this section we present results from simulations run for

several SNRs: 10, 15, 20, and 30 dB. Simulation runs have been made

both with and without pre-emphasis of the noise-corrupted speech

samples. Addition of noise shifts the DTW score histograms further

to the right. If much noise is added, pre-emphasis becomes inappro-

priate because the noise dominates the residuals left from the

first-order differencing. This is seen in figures 3.18 and 3.19 for

simulations with and without pre-emphasis, respectively, with addi-

tive noise introduced at a 10 dB SNR. (Compare these to figures 3.2

and 3.3 for the noiseless case.) Pre-emphasis of the speech

samples, formerly very helpful, is now destructive. In the absence

of pre-emphasis, some separability still remains for the RNS

f13,7,5} with lower threshold (figure 3.19b). (Only a single %

recognition error resulted for this case; it is the same single %Pi

error, recognition of "three" as "two," that resulted in the

noiseless case of figure 3.3b.)

With the higher SNRs 15 dB (figures 3.20 and 3.21) and 20 dB

(figures 3.22 and 3.23), better separability is retained between

histograms of scores for matches of similar words and those for

matches of different words. At 15 dB SNR, recognition is still

better if pre-emphasis is not employed, but pre-emphasis of the

speech samples may improve the separability between histograms at

20 dB SNR.
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When the SNR is 30 dB, the separations between score histograms

(figures 3.24 and 3.25) are comparable to those obtained when no

noise is present (figures 3.2 and 3.3). Pre-emphasis again is

definitely helpful; no recognition errors resulted when pre-emphasis

was used.

Table 3.2 lists the number of recognition errors counted in the

simulations versus the signal-to-noise ratio applied. Four columns,

corresponding to the four cases (with or without pre-emphasis,

RNS = (23,11,21 or {13,7,51) are shown.

Table 3.2

Error Analysis for Performance in Noise
Number of Recognition Errors

with pre-emphasis without pre-emphasis

SNR/ RNS (23,11,21 13,7,5) {23,11,2) {13,7,5)

10 dB 16 18 3 1
15dB 9 3 1 1

20 dB 3 0 1 1

30 dB 0 0 0 1
= 0 0 0 1

To summarize these results, the introduction of additive noise

produces overlaps in the score histograms for matches of similar

words and matches of different words. For the RNS {13,7,51 without

pre-emphasis, some reasonable separation is retained at an SNR of
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10 dB or better, and recognition performance, while deteriorating,

is better than might be expected, especially in light of the

marginal performance of LPC models in noise.

3.7 COMPARISON OF SINGLE-SPEAKER AND MULTISPEAKER PERFORMANCE

Multispeaker recognition is difficult with the present config-

uration of the speech recognition system. This is, in part, because

utterance detection has been treated strictly as a preprocessing

function of the system. All normalization of sample values to

compensate for variations in speaker dynamics, microphone placement,

system gain differences, etc., takes place after an utterance has

been detected and its beginning and endpoints have been defined. In

actual practice, however, some normalization may be required before

the utterance endpoints are fixed. Otherwise, there can be consid-

erable variation in the length of an utterance of the same word from

one speaker to another or from one recording session to the next.

Normalization that takes place after utterance detection does not

correct these discrepancies in utterance length.

Table 3.3 gives the utterance lengths in segments or frames for

two testsets produced by speakers different from speaker A, who

produced the database (table 3.1). Comparison of the lengths shows

some striking discrepancies between productions of table 3.3 and

those of table 3.1. For some testset words, e.g., "four," "five,"

and "foxtrot," there are few or no counterparts in the library

produced by speaker A comparable in length to the testset utterances

of speakers B and C. For this reason we have loosened the global

constraint, g, set at 9 in all previous simulations to larger values

for simulations with different speakers.
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Table 3.3

Testset Utterance Lengths (in Frames) for Speakers B and C

Word Testset B Testset C

alpha 50 51
bravo 62 61
charlie 58 57
delta 53 49
echo 46 47
eight 44 47
five 64 50
four 43 39
foxtrot 62 75
golf 36 57
hotel 61 62
india 62 55
juliet 69 81
kilo 52 62
lima 54 55
mike 49 53
nine 65 64
november 77 79
oh 58 44
one 47 51
oscar 58 65
papa 61 56
quebec 57 60
romeo 65 76
seven 46 58
sierra 53 74
six 60 81
tango 54 67
three 48 49
two 46 44
uniform 75 90
victor 52 69
whiskey 55 59
xray 63 72
yankee 61 63
zero 69 58
zulu 73 61
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Simulation runs were performed using the RNS {23,11,2} with

input quantization at 10 bits for each of the testsets for speakers

B and C with the global constraint set at the values 9, 12, 15, and

18. The histograms of DTW scores corresponding to matches of

similar words and matches of different words are shown in figures

3.26 - 3.29 for the respective settings of the global constraint.

In each case, the a plot shows the results for speaker B, and the b

plot shows scores for speaker C.

The DTW scores are relatively high for all cases, and there is

considerable overlap between histograms of scores for matches of

similar words and those for matches of different words, making

correct identification difficult. This probably reflects, in part,

the decision to treat utterance detection as a preprocessing func-

tion. Better separation would be expected if normalization were

applied prior to the utterance detection. Other measures that might

improve separation include the use of more than one speaker in the

database used for constructing libraries, and relaxation of the

endpoint constraints used in finding the DTW path. (The endpoint

constraints applied in all simulations require the path to pass

through the points (1,1) and (m,n), thus insisting that the first

test and reference frames be matched and the last test and reference

frames be matched. This constraint may be inappropriate in

situations where the utterance endpoints vary considerably from

speaker to speaker.) ..

Table 3.4 contains a summary of the error analysis for these

simulation runs. The column for testset B (or C) shows the number

of recognition errors resulting when the testset of speaker B (or C) %

is used with the library constructed from utterances spoken by

speaker A.
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Table 3.4

Number of Recognition Errors for Multispeaker Recognition

Global Constraint Testset 8 Testset C

9 7 13

12 8 10

15 7 9
18 6 7

3.8 DTW PATH COMPUTATIONS AND THE EFFECTS OF OVERFLOWS

As discussed in section 2.8.3, the DTW path .L.mputations can be

successfully performed in RNS if the local distortion values are

first quantized to two or a few levels. The revised shortest-path

computation was given in section 2.8.3. Two types of potential

overflow must be considered. First, the magnitude comparisons of

steps 3 and 4 are to be performed in the largest residue channel.

An overflow results if the difference, in absolute value, between

the cumulative path distances under comparison exceeds half the

largest modulus employed. Second, the cumulative aistances them-

selves are represented by residues in all channels used. An over-

flow results if the cumulative distance for the presumed best path

exceeds the range of the RNS. This is a serious error, generally

leading to a recognition error, for the resulting path score is much

lower than its true value.
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Let us consider the second and more serious overflow possibil-

ity. If we use the weight function of equation (8), the cumulative

cost for any path cannot exceed the number of reference frames.

Since the longest utterance in our test library consists of 104

frames, an RNS of range 104 or greater suffices for the shortest-

path computation (under one-bit quantization of distortion values).

Hence, for an RNS composed of the two prime moduli {13,111 no over-

flows of this type can occur, but for an RNS composed of the two

moduli T11,7}, overflow may result.

The first and less serious type of overflow is much more likely

to occur, and care should be taken to ensure that the first residue

channel is of sufficient size. Table 3.5 shows the number of errors

of the first type resulting for various choices of two-modulus RNS

for the DTW path computations. In all cases shown, the distortion-

function computations were performed using an RNS composed of the

three prime moduli {23,11,2). Quantization of the distortion values %

was performed as in figure 2.6 to a single bit (match or no-match)

using a threshold value T = Pl = 23. The last column of the table

shows the number of recognition errors for simulations performed

using the 37-word testset.

For the last two RNS, {7,5} and (5,31, the RNS range iq ex-

ceeded much of the time by the cumulative distances. The results

displayed in table 3.5 support the hypothesis that little harm

results from occasionally overflowing the largest modulus in the

path comparisons, provided that the number of overflows is not

excessive. No degradation in recognition performance was observed

until the larger modulus was reduced to 11, when the number of

overflows exceeded 9000. No overflows were observed when the larger

modulus was 19 or greater.
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Table 3.5

Number of Overflows of First Modulus and Recognition Errors
for Various RNS Choices for Path Computations with Two-Level

Quantization of Distortion Values

Moduli Number of Overflows Recognition Errors

23,19 0 0
19,17 0 0

17,13 233 0
13,11 2,587 0
11, 7 9,113 1
7, 5 108,394 34
5, 3 265,530 36

For a hardware implementation the two largest moduli of the

three employed for the distortion function calculation can be used

to form an RNS for the DTW path calculations. The choice of RNS

{23,11,2} for the distortion calculations is safe from this point of

view; the range of the RNS composed from the moduli {23,11} is

sufficient to avoid all serious overflows and to avoid less serious

overflows most of the time. The choice of RNS {13,7,5}, however,

entails more risk, as the range of the subset {13,7} may be insuffi-

cient. Overflow errors of the first type are likely to occur too

frequently.

Table 3.6 presents similar results for three-level quantization

of the distortion values (using the quantization shown in figure

2.6, with thresholds set at Pl = 23 and P2P1 = 253). Again the RNS

f23,11,21 was used for the distortion computations.
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Table 3.6

Number of Overflows of First Modulus and Recognition Errors
for Various RNS Choices for Path Computations with Three-Level

Quantization of Distortion Values

Moduli Number of Overflows Recognition Errors

23,19 0 0
19,17 0 0

17,13 360 0
13,11 4,341 0

11, 7 15,188 1

7, 5 178,504 36
5, 3 344,788 36

Histograms of DTW scores are shown for some of the simulations

in figures 3.30 to 3.35. The a plots illustrate two-level quantiza-

tion of the distortion values, and the b plots show scores obtained

for three-level quantization. Figure 3.30a is identical to figure

3.2a. Figure 3.31a is similar: there is a slight shift of the his-

togram to the right for similar words. This shift becomes more

pronounced as the second RNS is made smaller (figures 3.32a and

3.33a), but the histograms for matches of different words are

largely unaffected. However, when the RNS is reduced to {7,5}, the

effect of overflows in the cumulative distance calculation is felt,

shifting the histogram of scores for matches of different words down

tb the left (figure 3.34a). When.the RNS is reduced to the pair of

moduli 5 and 3, both histograms are shifted far to the left, as

almost all path scores have overflowed the small range (15) and been

mapped into low values (figure 3.35a). Correct recognition is now

out of the question.
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3.9 EXPERIMENTS WITH A VOCABULARY OF SIMILAR SOUNDING WORDS

Recognition results obtained using the 37-word database des-

cribed in section 3.1 have been good, reaffirming the findings of

earlier simulations based on an 11-word database. We expect these

results to be valid for much larger databases, but have been unable

to confirm this because of the large amount of computer time

required to run the RNS word-recognition simulations.

We believe that matches of different productions of the same

word will continue to exhibit low DTW scores independent of the size

of the database used for building the reference library. The real

impact of an expanded database arises from the increased likelihood ".

that there will be other words different from the test input but

close enough to it in sound to produce low DTW scores when matched

with the test. This has not been tested by the 37-word database,

since the 26 communication codewords were selected presumably for

their properties of distinctness.

In order to study the performance of our RNS implementation of
a DTW-based word-recognition system when the database vocabulary .

contains similar sounding words, we have created another database,

the rhymes database, containing 27 words. Five productions of each

word were recorded by speaker A to form a database for reference

library construction. A sixth production was recorded to serve as

test input. The number of frames produced by the utterance segmen-

tations are shown for all words in table 3.7.
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Table 3.7

Number of Segments Produced for Five Reference Productions
and One Testset Production for Rhymes Database Segmentations

Word Prodni Prodn2 Prodn3 Prodn4 Prodn5 Test

mack 48 41 46 44 45 49
man 61 67 73 65 67 59
mat 54 48 47 46 46 55

mech 57 46 46 44 44 40
men 56 57 54 58 54 56
met 44 44 40 42 43 44

mick 47 44 45 47 47 50
min 55 53 55 54 54 51
mitt 55 51 53 47 48 53

pack 48 48 46 46 36 49
pan 52 50 56 55 57 50
pat 51 53 51 46 44 50

peck 42 36 40 37 40 42
pen 57 54 52 52 53 53
pet 47 44 46 46 42 38

pick 42 42 44 42 42 39
pin 48 50 50 53 52 44
pit 47 46 49 47 39 45

sack 55 39 52 63 58 68
san 70 56 72 63 75 70
sat 44 49 60 60 62 58

sec 72 55 64 49 72 56
sen 63 61 69 70 72 64
set 58 53 54 41 43 54

sick 61 62 62 52 54 61
sin 66 48 67 62 64 57
sit 49 51 52 49 53 53
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Each word of the rhymes database has six near neighbors, e.g.,

the word "mack" is a neighbor of "man" and "mat," differing only in

the terminal consonant; of "mech" and "mick," differing only in

vowel sound; and of 'pack" and "sack," differing only in initial

-consonant.

Simulations were run with a library constructed from this data-

base, with PORDER = 12, 10-bit input quantization, and pre-emphasis

of the speech samples. The histograms of DTW scores for matches of

similar words and matches of different words are shown in figure

3.36a (RNS {23,11,21) and figure 3.36b (RNS {13,7,5}). The scores

for matches of similar words are somewhat higher and more spread out

than before (cf. figure 3.2). The scores for matches of different

words are lower, as expected. Their histogram is shifted to the

left (relative to figure 3.2). Separation between histograms for

matches of similar words and those for matches of different words

has deteriorated considerably, but still is sufficient to hope for

reasonably good performance of a word-recognition system based on

larger vocabularies.

For the simulation employing the RNS {23,11,21, a single recog-

nition error resulted. The test input "met" was confused with

"mat," both reference words returning the same normalized path

score. For the simulation using the RNS f13,7,51 no recognition

errors occurred. The histograms of figure 3.36 show comparable V

performance for each RNS. For the RNS {23,11,21, 71% of the correct %

matches have lower scores than 96% of the incorrect matches; for the

RNS (13,7,51, 70% of the correct matches have scores lower than 97%

of the incorrect matches; for the RNS (23,11,21, 96% of the correct

matches have scores lower than 89% of the incorrect matches; for the

RNS {13,7,51, 97% of the correct matches have scores lower than 84%

of the incorrect matches.
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SECTION 4

RNS-SYSTOLIC IMPLEMENTATION

Two systolic processing arrays are described in this section,

one to compute the correlation values of the individual frames of

speech and one to perform DTW. Both utilize RNS. The linear array

for correlation computation has been discussed in [1) but is

included briefly for completeness. The elementary cell in the DTW

array presented here uses the square of the Euclidean distance as a

distortion function, and the quantization of the distortion values

is done by mixed-radix conversion. The underlying systolic

configuration was originally conceived for general dynamic

programming [9].

To provide a very rough estimate of the upper limit of hardware

complexity of the D7W array, layouts of the reduced logic expres-

sions of the essential functions were examined using available CAD

tools for simple programmable logic arrays. Projections of hardware

complexity and throughput based on a careful state-of-the-art VLSI

design are extrapolated from these results.

4. 1 A SYSTOLIC AUTOCORRELATION VECTOR COMPUTER

Let x(m), mn > 0, be a set of uniformly sampled values of the

speech signal. This sequence is divided into finite, connected

portions that represent separate utterances; these utterances are

compared, one by one, with every utterance in a library.
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From a given test utterance we construct overlapping segments

of M samples; the shift between consecutive segments is denoted A.

Typical values of M and A are 180 and 80, respectively. The X-th

segment (or frame) is denoted x(M)(m), 0 < m < M - 1. From each

frame we define an autocorrelation vector r(M) = (rp(t), %..,

r0( ) , where P is the order of the autoregressive model,

according to the formula

M-1-n
rn(k) = xm(j)Xm+n(X)" (18)

m=O

The order that we use is P = 12.

U .- .%

4.1.1 Systolic Array

Since frames overlap, multiple correlators are required so that

the correlation vectors can be computed quickly. With M = 180 and

A = 80, at most three frames can overlap. Three correlators are

needed. This is illustrated in figure 4.1, where the input switch

selects samples from the appropriate frames.

104

%.



IA-71 90

000 12 X, XO 2ORLTr2

2&

I CORRELATOR p3

Figure 4.1. Autocorrelation Computer

Each correlator can be implemented with the linear systolic

array shown in fiaure 4.2, where all P + 1 cells are identical. Two

copies of the input samples for one segment enter the array, one at

each end, with zeros interleaved. Computation beqins when both

copies of x0 appear at the inputs of cell 0. The data then

proceeds, one cell at a time, through the array. At each time

instant each cell forms the product of its two inputs and adds it to

the contents of an accumulator. After all input samples in the

segment have been used, each cell contains its corresponding

coefficient.

105

SUM'



INPUT CELLCELEL

0 INPUT

OUTPUT

Figure 4.2. Systolic Autocorrelation Computer

The defining equations of the elementary cell are shown in

figure 4.3. If A is given a value of M/3, the two segments to be

computed consecutively in one correlator are not separated by zeros,

and something else must be done to prevent results corresponding to

different segments from mixing in the same cell. For this purpose

two control bits can be attached to the incoming data; one accompa-

nies x0 of the right input, and the other is attached to XM_1 of

the left input. Control bit C2 (figure 4.3) causes a cell to output

the contents of its accumulator and start a new computation, and

control bit C1 instructs the cell to ignore further inputs. The

basic operation of the array is illustrated in figures 4.4 and 4.5;

the interplay of the control bits is shown in figure 4.6. .
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4.1.2 RNS Hardware Implementation

If the set pl, P2, ..., pq is used for the moduli of the RNS,

then Z versions of each correlator are required, each one operating

with arithmetic modulo pi. One RNS correlator is shown in figure

4,7. (The small squares are time delays used to impart the appro-

priate time lag to the data input from the right.) A more detailed

design of a modulo P cell appears in figure 4.8. This diagram

illustrates a modification of a cell previously designed [10] for

use in a transversal filter.

4.2 NORMALIZATION

The correlation vectors are normalized before they are

processed by the DTW algorithm.

The normalized correlation vector r= (rp, ... , ro) is

obtained by dividing each component by r0 . Since 0 < I rnj < r."

for each n = 0, 1, ..., P, all the normalized components lie between

plus one and minus one. The normalized values are then scaled and

quantized to an integer between 0 and S, where S is the scalp

factor. Then they must be encoded in the RNS used in the DTW.

Division by a variable number is too complicated when the

numbers are represented by their residues; we must exit from RNS .q

for general division. A weighted (binary) number representation of

all the rn can be obtained by mixed-radix conversion so that the

division by r0 can be performed. This division occurs only once for

each test segment processed, while each normalized vector is used

many times in the DTW operation.
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A block diagram of the operation is shown in figure 4.9. The

correlation values are given in residue form with respect to the set

of moduli used for their computation; each one of them is accompa-

nied by a control bit which has a value of "one" for r0 and uzero_

for r I, r 2 , ... , rp. The binary representations of the coeffi-

cients are obtained from a residue-to-binary converter. The r0 -

divider reconizes r0 by observing the control bit and is latched;

the other coefficients in the same vector are divided by ro. The

value of r0 is updated every time a new set of coefficients appears.

From the weighted-number representation of the normalized

coefficients the new residues can be readily computed by a table

lookup, which observes only the higher-order digits; for example, if

S = 15, only 4 bits are required to determine all the residues in

the new RNS.

[A-73.207

ro TOr,.VIE TO . . ' , r.

LARGE . .. SMALL RNS

Figure 4.9. Normalization

114

........ . . ....6 4 4



IA-l1 ,N

e2(4) E'(4)

e2(3) E'(3)

e(2) r'(2)

e(1) r(1)

I( U'(1)

910) u2(2) u 1(3)

u2(3) u'(4)

!!2(4)

u-N-4I

Figure 4.10. DTW Input Data Flow

115

%-."".. N"



0143 0'3 03 "3

0'42) F42) 0"() 0"(2

u 11 l1 u"'(21 u 131

0''(2) u111131 "3

U-1(3)

U..

u12)u"() u"'z(31
u 121(3)

(1 ) '

Iu ""(2) I

'( ul"I-

Figure 4.11. Systolic ('amputation of Local Distort-ion

116

N



4.3 SYSTOLIC ARRAY FOR DTW COMPUTATION

The DTW algorithm computes the cost of the shortest

(lowest-cost) path through a two-dimensional array of distortion

values determined by a pair of test and reference utterances.

Dynamic time-warping can be accomplished efficiently with a

two-dimensional systolic array. The reference and test utterances,

represented by their correlation vectors r(j) - (rp(j), rp_ 1(j),

... 1 r0 (j)), j - 1, 2, ..., n, and u(i) - (up(i), up_.(i),

uo(i)), i = 1, 2, ..., m, respectively, enter the array as shown in

figure 4.10. All data corresponding to one pair of utterances to be

compared lie on one diagonal and bear the same superscript. As the

data progress throuah the systolic array each diagonal retains its

relative position with respect to the others so that all cells on a

given diagonal operate on an utterance pair at any given time (see

figure 4.11). Observe that cell (i,j) always receives the vectors

u(i) and r(j) in an utterance pair.

Since the path computations for each pair of test and reference

utterances will proceed as a wavefront making computations on

successive diagonals, the deletion of previously used distortion

values allows pipelining to the extent that distortion functions

associated with a number of utterances equal to the number of

diagonals can be present at any given time, with the path

computations being pipelined alonq successive diagonals.
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The computation of the shortest path is carried out itera- A

tively. At each time instant each cell computes the shortest path

from cell (I, 1) to itself by observing the lowest costs of paths

leading to the four cells that precede it (according to type 3 local

path constraints), selecting the smallest one and then adding the

local distortion, i.e., the cost of getting from that cell to %

itself.

At each instant each cell performs the following operations:

1. Computation of local distortion

p
dij= un(i) - rn(j)) 2  (19)

n=O -.,.

2. Quantization of dij to d'ij to reduce the numerical

range requirement

3. Calculation of path costs

Ci,j = d'ij + min(Ci-l,j-l, Ci-l,j-2)

Ci,j = min(Ci,j, d'ij + Ci_1,j). (20)

The results of step 3 are then passed along to neighboring cells

for further processing.

For the computation in equation (20) to take place, the four

path costs must be available at the input of cell (i,j) when the

cells on its diagonal are ready to compute. This is clearly

vs possible since the four path costs are on diagonals that have

already completed computation. In the physical array all data move U
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horizontally or vertically, and diagonal communication--e.g., the

communication of ci_1,j I from cell (i-1,j-I) to cell (i,j)--is

done throuqh cell (i,j-1). At each step an such a path, the data

advance one diagonal. All data being operated on, or computed,

corresponding to one pair of utterances, lie on the same diagonal.

From this observation, it follows that the distortion values on

a given diagonal need not be available until the computational wave-

front has reached that diagonal and this can be managed by the

pipelined scheme already discussed for the distortion computations.

Hence, the DTW can be completely pipelined, with each diagonal

handling one pair of utterances. From cell (m,n) the scores of the

pairs of utterances compared will then emerge one-by-one, and the

entire process is readily pipelined.

Figure 4.12 shows a typical cell in the DTW grid. The computa-

tion of cij is done in two steps so that actually only three quan-

tities previously computed are fed to each cell (ci_1,j is the

minimum of ci_2,j_1 + di_1,j and ci_2,j_2 + di_1,j). Also,

ci_1, j is not used by cell (i,j) but is passed along from cell

(i-1,j) to cell (ij+l). Similarly, ci_1,j_1 is passed to the

cell above, after it has been used by cell (i,j). Finally, cij is

computed and passed to cell (i+1,j). Thus, in addition to inputs

r(j) and u(j), which get passed along after dij is computed, each

cell accepts four inputs and produces four outputs.
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Figure 4.12. DTW Array Processing Element
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4.3.1 Local Distortion

In our RNS implementation three primes are used for the moduli,

and dij is computed independently in each of the three residue

channels. A block diagram of a serial, local-distortion computer is

shown in figure 4.13. It consists of a mod p subtractor-squarer, a

mod p adder and a latch. The mod 23 and mod 11 subtractor-squarers

and adders can be implemented with PLAs; the mod 2 hardware requires

only two exclusive-OR gates, one for each of the two functions.

o4i, SUSTRACTOR ADOER ACCUMULATO.%. AND SOUARER '"

Io 4 '~I
IA 72 967

Figure 4.13. Local Distortion Computation Mod P

The U.C. Berkeley Boolean function reduction program ESPRESSO

was used to simplify the two mod 23 and the two mod 11 functions.

The reduced Boolean logic expressions are tabulated in the

appendix. Computer-generated plots of the PLAs corresponding to

the reduced mod 11 subtractor-squarer and adder are shown in

figure 4.14. Both PLAs have eight (one-bit) inputs and four

outputs. The subtractor-squarer has 78 product lines and the aader

has 79 product lines, so the PLAs are of equal size. The dimensions

of the mod 11 functions are shown in figure 4.14 as multiples of the

feature size k.
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4.3.2 Mixed-Radix Quantizer i

The two-level quantizer takes dij as input and lets the quan-

tized value d'ij be equal to 1 if dij >23 and 0 if dij < 22.

If dij has mixed-radix representation

dij =n3P2P 1 + n2P 1 + n i  (21)

then

S0, if n2 =n 3 =0d'ij - (' 22)..
1, otherwise .:..

As explained in section 2, the condition n2 =n 3 =0 is equivalent

to the pair of equations

dij E nI mod P2•

(23),. .

dij --- nI mod P3-%

% '

A circuit that perform t the quantization is shown in figure 4.15.

Since d'ij s 0 or 1, it is identical to its residue in each class

since (0,1 } is contained in every residue class. ..-
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Figure 4.15. Two-Level Quantizer

For the RNS {23,11,2}, P, - 23; residues mod 23 must be reduced

mod 11 and mod 2. The latter requires no further computation. The

full quantizer can be implemented in the PLA shown in figure 4.16;

it has 10 inputs (five, four and one bits for the mod 23, mod 11,

and mod 2 residues, respectively), one output and 26 product lines.

It implements a reduced Boolean expression obtained with Espresso.

The espresso output for the full quantizer is tabulated in the
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Figure 4.16. PLA For Quantizer

4.3.3 Path Computation

The determination of the minimums in equation (20) is performed

only in the largest residue channel. Figure 4.17 depicts a circuit

that computes Cij and C in an RNS of three residues.
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The dashed boxes enclose circuitry that computes minimums. The

ccumputation of each minimum requires a mod pl subtractor, a sign

detector, and a selector. The selector is trivial and should occupy

only a small area. The other two functions can be integrated and

implemented in a 10-input, 1-output PLA. Again, Espresso was used

to reduce the Boolean expression for this function; the reduced

expression is given in the appendix. A PLA implementation is

pictured in figure 4.18. It requires only 32 product lines. The

adders used for d'ij are quite simple since d'ij is a one-bit'

number.

4.3.4 Packaging and Throughput

Each DTW cell requires the following functions:

One Mod 23 Subtractor-Squarer

One Mod 23 Adder

One Mod 11 Subtractor-Squarer

One Mod 11 Adder

One Quantizer

Two Minimum Computers

To obtain a crude estimate of the area of one DTW cell, PLAs

implementing the above functions are grouped in figure 4.19.

Table 4.1 summarizes the dimensions in terms of the feature size k.

The details of the required contr6l circuitry and interconnections

as well as a few gates required for the mod 2 operations have not

been considered in this initial estimate. Assuming pessimistically POP"

4. ,
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that this additional circuitry would represent 50% of the total

hardware, we estimate that the chip area for one DTN cell is

3,200,000X 2 (an 800X x 4000X rectangle) which in 4 pm nMOS

technology represents 12.8 fl2 . It follows that in a 7 mm x 7 m

chip four cells might be integrated. This is an upper bound an area

since, as shown in the appendix, a reduction of the area by a factor

of more than ten is likely if random logic is used and, as discussed

below, data would flow serially from cell to cell, so that some of

the functions implemented here in PLAs could be simplified by using

combinational logic and making use of the serial data flow. This

would be especially important in the case of mod 23 functions

because the corresponding PIAs are relatively large. A comparison

of the area of a PLA and a custom logic design of a mod 23 adder is

included in the appendix.

Table 4.1

PIA Dimensions for DTN Cell Functions

Mod 23 Subtractor-Squarer 312k x 3290X
Mod 23 Adder 276X x 2040%
Mod 11 Subtractor-Squarer 209X x 706X
Mod 11 Adder 209k x 724k
Quantizer 208X x( 296X
Mod 23 Minimum Computer 205X x 317%
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One advantage of systolic arrays is modularity, i.e., only one

cell needs to be designed with multiple cells repeated in one IC.

A problem with two-dimensional arrays is the I/O limitation. If an

N x N array of cells is to be incorporated in one package, 4MN I/O

leads are required. M is the number of leads connected to each side

of each cell, assuming, of course, that more than one IC is inter-

connected to form the complete system.

Standard IC packages come with 20, 40, 84, and 132 pins; the

latter two are pin grid arrays and the former two are dual in-line

packages. Based on the pessimistic area estimate given above, at

least four cells could be integrated in a 49 mm2 chip. If random

logic is used and the size of a cell is reduced so that 49 cells fit

in a chip, M is reduced to 4.

The I/O limitation is important because the time required to

transmit one bit between chips in 3 Lm CMOS technology is about

100 ns. With a 12-pole model, 15 symbols must cross each side of

each systolic cell: 13 correlation symbols and 2 path cost symbols.

Since communication between residue channels is required, each cell

in the array should contain the hardware for all residues. With 23,

11, and 2 as moduli each symbol requires 10 bits for its representa-

tion so 150 bits must cross in each cell period through 4 leads.

This requires at least 3.75 4s, which is longer than all the other

cell operations require. Hence, the time-warp rate of the systolic

array is estimated as 266 kHz., as limited by the communication

time. This rate can be increased at the expense of integrating

fewer cells per chip.
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4.4 CONCLUSION

Two systolic architectures were introduced in this section, one

for computing autocorrelation coefficients and the other for

performing DTW. Implementation in RNS was discussed, and trial PLA

layouts were presented to estimate circuit complexity.

The computationally intensive part of the speech recognition

system is the DTW, for which the corresponding systolic cell is

simple when implemented in RNS. It is estimated that 49 cells could

be custom-integrated into one chip, so for a 50 x 50 array about 50

ICs would be required. All chips would be identical, since each one

performs computation in all the residue channels. Alternatively,

wafer-scale integration could be used for the entire array.

The limiting factor in the speed of performance is the bit-

serial transfer of information between two ICs, which, in 3 PM M4OS

technology, can be done at a 10 MHz rate. Based on this rate, it is

estimated that one new comparison between a test and a reference

utterance can be done every 3.75 4s. Wafer-scale integration could

also speed up the process.
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SECTION 5

SUMMARY

Isolated word recognition is a computationally intensive

processing function. The combination of residue number system

computation and systolic array architectures offers practical

simplification in the design of a special-purpose hardware

processor. This report has described such an architecture; it uses

short-time correlation analysis to form the spectral patterns, a

distortion function employing squared Euclidean distance between the

normalized correlation values of the test and reference utterance

segments and a two-dimensional pipelined processor array to imple- .

ment dynamic time-warping for pattern registration. With the

exception of the normalization of the sample correlation values, all

significant computations are carried out in a compact RNS for imple-

mentation in specially designed hardware of low complexity. This

combination of techniques provides for a very high processing

throughput in simple hardware that can be used for real-time word

recognition with a large vocabulary.

This architecture has evolved from a previous attempt at imple-

mentation that used precomputed LPC analysis of the reference seg-

ments with the calculation of the Itakura-Saito distortion between

the test and reference segments carried out in RNS. While the

distortion calculation seemed well-suited to RNS, requirements for

integer scaling of inverse correlation coefficients imposed an

impractical size on the integer ring containing the computation. In --

the present method, we use the correlation values that determine a

12th-order LPC model, and, recognizing that the information requi-

site to predict the LPC model spectrum is contained entirely within
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these samples, we employ a squared Euclidean distance computation

that reduces the size of the integer ring. We have been able to

reduce the required computational range from about 30 bits for the

Itakura-Saito distortion to about 9 bits for the squared Euclidean

distortion without experiencing any significant loss in

discrimination ability.

An underlying premise for performing the DTW computation in

RNS, since it requires decisions based on comparison of the magni-

tudes of cumulative local-distortion differences, is that these

differences are small enough to be contained within the range of a

single modulus. The local decisions can then be made within a

finite field while the resulting least-cost path metric is accumula-

ted in the full RNS. To contain the range of the local distortion

differences, we quantized the distortion values to a smaller range.

In our architecture, this is done entirely in RNS by a partial

mixed-radix conversion that establishes natural quantization bound-

aries and is simple to implement with Boolean logic.

We have described the processing algorithm, detailing the

important steps; we have presented the results of extensive simula-

tions using selected system parameters; we have also described the

design concept and operation of a two-dimensional pipelined array

that carries out both the local distortion computations and the DTW

path-metric computations in an RNS of moderate range. We made a

* very rough estimate of the silicon area used and throughput attained

from a hardware implementation in programmable logic arrays (PLAs)

and exhibited some trial layouts for the reduced Boolean logic --

functions corresponding to functional components of the DTW array.
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While we would not advocate implementation in PLAs because of

the inefficient use of area, this artificial design exercise enabled

us to upper-bound the complexity of the processor. Our conclusion

is that the combination of RNS arithmetic calculating the squared

Euclidean distance and quantized shortest-path search, when imple-

mented in a two-dimensional pipelined array provides an architecture

that is simple and practical, even if naively designed with PLAs.

The careful design of these functions using state-of-the-art custom

logic tools could provide an even simpler hardware implementation.

We conclude that the architecture described is a leading candidate

for VLSI implementation as a special-purpose hardware processor, a

task that should be undertaken in a follow-on effort.
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APPENDIX

REDUCTION OF THE BOOLEAN EXPRESSIONS FOR DTW CELL FUNCTIONS

The (modified) output of the U.C. Berkeley Boolean function !

reduction computer program ESPRESSO for the six functions discussed

in section 4 is listed in tables A.1 through A.6.

The input variables are called x-0, xj, ..., xn_ 1 and the out-

put variables Yo, Yl, ... , Ym-1" Consider the listing for the mod

11 subtractor squarer. The first three lines indicate that there

are eight input and four output variables and 78 product terms. The

rest of the printout consists of eight input and four output

columns. Each eight-bit input word represents a product term in a

Boolean sum-of-products expression. In each of the eight positions,

a 1 means that the corresponding variable appears in the product

term uncomplemented, a 0 means that it appears complemented and a -

means that it is absent. For example, a product term listed as

-1010000 stands for xlx2x3XLx5x6x7.

The reduced sum-of-product expression corresponding to the

output variable yi contains the product terms from the rows where -

a 1 appears under the column for Yi" For example, the first few

terms for yo for the mod 11 subtractor-squarer are

YO = x0xlx 2x 3x 5x6x7 + xlx 2x3Xgx 5x6x7 +

Jve
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Table A. I

Mod 23 Subtractor - Squarer

A 10 .o 5 .p 3 8 4

inputs x out y inputs x out y inputs x out y
9876543210 43210 9876543210 43210 9876543210 43210

0000000110 01001 001100-010 10000 -111100000 10000
001010-001 10000 0-01000110 10000 001000-000 10000
0-00100101 10000 00000-1111 10000 0-00000100 10000 -

0001000-01 00001 00000001-1 00010 0010100-10 00001
001101-001 00100 1-00100110 00100 -101000001 00100
-110100010 00100 00010-1101 00100 -1-1100010 01000
00101-1110 00100 1-10000010 00010 000101-100 00010
000010-000 00001 0-00000001 00001 00110-0011 01000
001010-100 00001 -001100110 01000 00011-0000 01000
00-00-1101 01000 -000000011 01000 -001000101 01000
00101-0010 01000 00110-0001 00010 -011000101 00001
00100-0001 01000 00001-0010 00001 -000100100 01000
-000100110 00010 00101-0110 00001 00101-0000 00010
000101-001 10010 1-00100010 10010 000011-000 10010
1-00000001 10010 0-11000000 01100 00110-1111 01100
00011-1001 00101 -110000011 01100 00001-1010 01100 ,
-111000101 01100 -100100011 00101 00011-1100 01100
-101100101 00101 00101-1011 00101 -100100000 01100
00000-1001 01100 000101-010 00011 -110100100 01100
1-10000000 01001 00110-1001 01001 -101000011 00011
000001-100 01001 00011-1010 00011 1-00000000 00011
00101-1000 01001 00110-1100 01001 -100100110 01001
-011100001 01001 -110000110 01001 00110-1101 00011
-110100110 00011 00001-0111 01001 1--i000011 10000
000111--i0 10000 00-011-100 10000 1-10000-01 10000
00-1100-01 00100 000-0000-1 00001 00-0100-11 00100
001-000-11 00001 00-11001-0 00001 000-100-00 00001 *,-

0001100--0 00001 0010000--i 00001 1-1001-000 10000
0010-1-000 00100 1-11-00010 01000 000-0-1011 00100
1-0001-100 10000 -1011000-0 00100 000101-11- 01000
1-1-100011 00010 0-110-1010 10000 -10100-110 10000
-1111001-0 00100 -01110-011 10000 1-0-100001 00010
0-101-1001 10000 001100--00 00100 0000-1-001 00001 "'7
1-0010000- 00001 -10010-101 10000 1-010000-0 00010
000111-1-1 00010 000001-00- 00001 0--0000110 00100
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Table A. 1

(Continued)

inputs x out y inputs x out y inputs x out y
9876543210 43210 9876543210 43210 9876543210 43210

00100-11-1 00100 000011-0-1 00010 0-100-1000 10000
-10000-100 10000 0-011-0111 10000 001-0-1011 00010
1-10-00100 00001 00010-100- 00001 001001-10- 00001
000001-0-0 00010 -100-00010 00001 000-1-1000 00010
-101-00100 00001 001Q0,-101- 00001 -111100-10 01000
00010-1-11 01000 -1011001-0 00010 001-1-1100 00010
-1000000-1 00010 -011-00000 00001 -1-0100010 00010
00100-10-1 00010 -0111000-0 00010 -1100001-1 00010
00010-1-01 00010 000-0-0111 00010 -1-0000101 00001
-11111-010 01000 00010--000 00100 -11011-010 00010
-1011-1000 01000 --00000010 00100 00100--010 00100
1-010-1101 00010 --01000100 00100 -1000-1011 01000
-1111-1100 01000 1-010-0001 00001 -1110-1001 00010
-1100-1001 01000 -00111-100 00001 0-000-1110 01000
-1100-1111 01000 1-100-0011 00001 -1001-1100 01000
-1001-1110 00010 -1101-0000 01000 -0101-1010 00010
0-000-0111 00001 -0000-1101 01000 -1010-0101 00010
-1000-0101 01000 -0111-0100 01000 -1001-0100 00010
-0100-0111 01000 0011-1-010 00110 1-0100011- 00110
-111-00011 00110 001011-00- 00110 -11100001- 00110
1-00-00101 00110 1-1-100001 01001 00011-111- 00110
1-0000010- 00110 0001--iii0 00110 -110-00001 00110
-11000000- 00110 1-1-100101 00011 00001-110- 00110
000011-1-1 01001 -0011-1011 10010 0000--11oo 00110
-1011-0011 10010 001011-1-1 00011 -0010-1010 10010
-0111-1111 10010 -1010-0010 10010 -1111-0111 10010
-0110-1110 10010 -1110-0110 10010 -0001-1001 10010

S.. -1001-0001 10010 -0000-1000 10010 -0101-1101 10010
-1000-0000 10010 -1101-0101 10010 1-0100-001 01100
0-0111-001 01100 -0100-1100 10010 1-0010-011 01100
-1100-0100 10010 1-1000-011 01100 0-0011-010 01100
1-0010-000 01100 1-0100-100 01100 0-0111-100 01100
0-1001-010 01100 0-1101-100 01100 0-0001-001 01100
1-1000-110 01100 1-000-1010 00101 1-1001-001 01001
-11101-001 01001 1-0011-100 01001 -10101-000 01001 '-

1-010-1111 01001 1-010-1011 00011 -1110-1011 01001
1-001-1110 01001 -1111-1001 01001 1-1-100-10 10000 , 5

00-101-1-1 10000 -1011-1110 01001 -10011-000 00011 -5

-1110-1000 01001 -1101-1010 01001 -1010-1101 01001
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Table A. 1

(Continued)

inputs x out y inputs x out y inputs x out y
9876543210 43210 9876543210 43210 9876543210 43210

--------------- ----- ---------- ----- ---------- -----

-1001-1111 01001 -11011-100 00011 -0111-1010 01001
1--1100-00 10000 00-001--il 10000 -1010-0111 01001
-1101-0111 01001 -0111-1110 00011 -1110-0111 00011
1-11-1-010 10000 1-1-11-001 10000 1-0101-11- 10000
1-0011-1-1 10000 1-11-00-01 00100 00-011-11- 00100
1-1-100-00 00100 1--110001- 00001 -11101--l0 10000
00-1-1-000 01000 00-001-1-1 00100 1--1-00010 00001

1-010-1-10 10000 001-01-11- 00010 0001-1--il 00001

00-101-11- 00001 -11011--01 10000 1-11-001-0 00010

1-001-1-01 10000 1-01-00-11 00010 1-11-00-10 00001

-1-1-00001 01000 -11001--00 10000 1-00000-1- 01000

1-000-1-00 10000 00-01-111- 01000 0010-1--00 00010

-1-1000-00 01000 -1-1100-00 00010 1-1-1-1010 00100
00-00-1-11 00010 -1-111-001 00100 1-1-0-1000 00100

-10101-1-1 00100 1-11-1-001 00010 1--111-000 01000
-1-101-000 00100 1-1-11-000 00010 0-0111-01- 00010
-01111-0-0 00100 1-01--0111 00100 1-0011-11- 00010
-101-1-001 00001 1-0-0-0111 00100 -11111-11- 00001
1-1-10-110 00010 -11-11-000 00001 1-0001--li 01000
-1-111-010 00001 1-001-101- 00001 -10111-0-0 00010
-11001-01- 00001 --111-1011 10000 1-0001-1-1 00010
-11101-10- 00001 0-1101-1-1 00010 1-01--1100 00001
-1011--ill 10000 1--110-100 00010 -11111-1-0 00010
-1-101-100 01000 1-0-1-1100 00010 1-1000-10- 00010
1-10--iii0 00001 -11001-0-1 00010 1-000-10-1 00010
1--01-i010 00010 1-000-11-1 00001 -11-1-1000 00010
-1111-10-0 00010 -10101--01 00010 -10-0-1111 00010
0-1001--il 00010 1-100-11-1 00010 1-000-011- 01000
1--00-1101 00001 -00001-11- 00001 -1000-111- 00001
1-000-1-01 00001 -0-01-1011 01000 -0111-1101 01101
-1-01-0011 01000 -1000-11-1 00010 -1-11-0101 01000
-0011-1-01 01000 -0-00-1010 01000 -1-00-0010 01000
-0010-1-00 01000 -0100-1-10 01000 --1110-001 00100
--001-1111 00100 -1000--110 00100 --000-1110 00100
-- 111-1000 00001 -01111-11- 10010 1-11--0111 10010
1--i0-010 01100 1-11-0-101 01100 1-1-10-100 01100
1--i0-i01 01100 0-1011-11- 01100 1-1-11-010 01001
1-11-1-000 01001 0-0101--11 01100 0-1001-1-1 01100
-01111-01- 00110 0-1011--11 01100 1-10--1001 00110
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Table A. 1

(Continued)

inputs x out y inputs x out y inputs x out y
9876543210 43210 9876543210 43210 9876543210 43210

1-0101-1-1 01001 1-11-1000 00110 -10011-10- 00110
-100-1-100 00110 1-1-1-1111 01001 -10001--li 00110

1-1-il--i 0001 -1-111- 10000 1-11-1-0 10000
1-111-01 00100 1--11--0 00001 -11-1-1-1 00001
1--li-1O- 00100 1-111-00 00100 1-1-11-1-0 00001
1-11-01-1-li 0001 -01-10 00100 -111-1-1-il 00001
1-1--10- 00001 1-1-1-1-11 01000 1-11-1-01 00100
-11-0-1-00 0010 -10110-0 00001 -110-1-11 00001
-11-0-11-1 00001 -1-00-1-10 00100 1---110 00010

1-100-1-0- 00010 -10-1-1-00 00001 -1100-1--i 00001
1-1-1--ill 00100 -- 1111-1-1 00100 -1-01--ill 00100
1-11-l0l- 00110 -101-1-11- 00110 1-ill-01001
1-11-1--il 01001 1-11--1-0- 01000 -1-0-1-11- 01000
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Table A. 2

Mod 23 Adder

. 10 .o 5 .p 2 3 6

inputs x outputs y inputs x outputs y inputs x outputs y
9876543210 43210 9876543210 43210 9876543210 43210

1-0-000-00 10000 00--01-000 10000 1--00000-0 10000
000-01--00 10000 1-00000--0 10000 00-001-0-0 10000
---0000001 00001 --00100-00 00001 --00000-01 00001
00-01--000 00001 00-00--001 00001 --0100000- 00010
00001---00 00001 0001---000 00010 --00-00010 00010
00010--00- 00010 --0000001- 00010 0000---010 00010
000--0-100 00100 0-1-00000- 00100 0-0-00010- 00100
001000-0-- 00100 0-10-000-0 00100 0-00-001-0 00100
001-0-100- 01100 000-0-110- 01100 0010--10-0 01100
0000--11-0 01100 -i--0-1000 10000 -10-0-1-00 10000
00000-1--- 01000 -1-00-10-0 10000 -1000-1--0 10000
0-01-0-000 00010 0-0100-00- 00010 -1000-1-01 00001
0-00-0-010 00010 0-0000-01- 00010 0--01-1000 00001
0--00-1001 00001 00-11001-1 01000 0-001-1-00 00001
-1110-0001 01000 001-100-11 01000 -1010-0101 01000
-1101-0010- 01000 -1001-0110 01000 1-0-01--00 01000
1--001-0-0 01000 -1100000-- 01100 -1000001-- 01100
00-00-101- 01010 -11-1-11-1 00001 -1---00000 01000
-1-0-0000- 01000 -100-00-0- 01000 1--0-0000- 10000
1-00-00-0- 10000 --0-1000-0 00001 --0-0000-1 00001
00-0-1-00- 10000 0000-1--0- 10000 000---1-00 01000
000-1--0-0 00001 000-0--0-i 00001 00-0--100- 01000
0000--1-0- 01000 00-1-0--00 00010 00-100--0- 00010
0--1-00-00 00010 0--1000-0- 00010 00-0-0--lo 00010
0--0-00-10 00010 0--0000-1- 00010 0011-00-1- 01000
00-1-0011- 01000 -10--00100 01100 1--1-00000 10010
-011100--1 01000 -111100--1 10000 001---1000 01100
-1-11001-1 10000 000001--i- 10010 -11-100-11 10000
00-00--11- 00010 1 ---- 1-000 01000 00--1-0111 01000
-1110-1-10 00001 -1-10-1110 00001 1-0001---- 01000
-1-100000 00101 -111--01000 00-11-11-1 10000
-110--1101 00010 -1101-110- 00010 001-1-1-11 10000
00-1-1111 10000 00000-1-1 00101 -1-111--i- 00010
1--i--ill- 01000 1--1--i-11 00010 001--001-- 01000
-1-0--100- 10000 -100--1-0- 10000 0-0-1-10-0 00001
0-0-0-10-1 00001 -111-00-1- 10000 -1-1-0011- 10000
-11-0-11-0 00001 1--0-1-00- 01000 1-00-1--0- 01000
--1-0--000 00100 -101-1-0-1 00100 -10111-0-- 00100
--0-0--i00 00100 0011--i-i- 10000 00-1--ill- 10000
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Table A.2

(Continued)

inputs x out y Inpus x out y iniputs x out y
9876543210 43210 98'76543210 43210 9876543210 43210

-- 100-0-0 00100 -10-11-01- 00100 --000-1-0 00100
1-01-10-1 00100 1-01-1-0-1 00100 1-0 --- 1011 00100
1-0-1-101- 00100 1-0-11-01- 00100 -1-1-0111 10000
-0111-1--i 10000 -1111-01000 -- 1101-lO 00001

-11---l00010 1-11--10000 1----l- 10000
1---il 00001 -- 1011-10- 00010 1-1---01000
1-10 --- 101 00010 -1111-1--i 00001 1-l---00010

-11-1100001 -111-1-- 00100 -1111-11-- 00100
1---1i 00010 1-1ill--i- 00010 -11-1-1-11 00001
-1-1-1111 00001 -11 --- 1111l 00100 -11-1-111- 00100
1-111-1-11 00010 -1111-1-1- 00010 -1-1--lill 00010
-1-11-111- 00010 -1-11-1-1 00001 1---ii00001
-10--000-- 01000 1-0--000-- 10000 000--1-0-- 10000
00--10 --- 0 00001 00-00 --- 1 00001 00--- 10-- 01000
0 --- 100--0 00001 0 --- 000-1 00001 -11--001-- 10000
-1-0-1--Ol 00010 -1-011--O- 00010 001 --- 11l-- 10000
1-0-1-01 00010 1-01-1-0- 00010 1-0-1-01 00010
1--011--0- 00010 -10----i 00100 -- 1-01-1-0 00001
1-1-0--1-0 00001 1--il-lO-- 00100 1--111-0-- 00100
1-0----l 00100 -11111 ---- 01000 -1111-01000
-11----l 01000 1-11-1 --- 1 10000 1-iiii10000

1-ili-10000 -- 011-0-1 00100 --- 101-11- 00001
1-1----l 10000 1--1--10000 1 --- 11-11- 10000
1-1--- 01000 -- 0-1-Oil 00100 -- 10-1-1-1 00010
1---- 01000 1-l-i-01000 1-11i---- 10 00001
1-1 --- 1-11 01000 1-----01000 1-1-1--l0- 00010
1 ----- 1111l 01000 1 --- 1-111- 01000 -- 1111 --- 1 00001
--- 111-1-1 00001 -- 111100100 -- 111-00100

--- 1-i00001 1-1-i--- 00001 1-11 --- 1-1 00100
---11-00100 1-1-1 --- 11 00001 -- 11-i00010
--11--00010 1 --- 1--111 00001 -- 111-00010

i-l-l11 001.00 1---i-00100 1-11 ---- 11 00010
111i--i 00010 i-u--00010 -- i-ii00100

---- il00100 -1-01 --- 0 00001 -10---10-- 10000
1 --- 0-1--0 00001 1 --- 01 --- 0 00001 1-0--1-0-- 01000 __

--- 10 --- 00 00010 --- 00 --- 10 00010 -- 10-00- 00100
-00 --- 10- 00100 -1--1i --- 1 00001 -1-ii-01000

-- 01-0 001--- 1-1-1 00001 1---11 --- 1 00001
1--i--.10000 1-1i---11l-- 01000 -- 01---01- 00100

---i---i 1100010 -- 1i --- 11- 00100
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Table A.3

Mod 11 Subtractor - Squarer

. 8 .o 4 .p 78

inputs x out y inputs x out y inputs x out y
76543210 3210 76543210 3210 76543210 3210

-1010000 0010 0000-101 0010 -1110010 0010
0010-111 0010 0001-100 1000 -1000001 1000
-1010010 1000 0010-101 1000 -0110000 1000
0000-011 1000 -1lOQQO 0100 0000-111 0100
00100-00 0100 0-000010 0100 1-000000 1001
00001-00 1001 00011-00 0101 1-000001 0101
1-1-0010 1000 00101-1- 1000 -111-100 1000
-100-111 1000 -011-110 1000 -110-011 1000 .,S

-0110-01 0100 0-01-011 0100 0-10-100 0100
-1000-10 0100 001-1-00 0011 1-00001- 0011
-11-0001 0011 0001-11- 0011 000--110 0011
-110000- 0011 1--10001 1001 00011--i 1001
-1011-00 1001 1-00-101 1001 1-1--il 1000
-1111-1- 1000 00-11-1- 0100 1-1-00-1 0100
1-1-110 1000 -1101--i 1000 1--100-0 0100
00-01--1 0100 -101-001 0101 -001-101 0101
1-1-1-00 0100 1-001-1- 0100 -100-000 0101
-000-100 0101 -111-011 0101 -011-111 0101
-110-010 0101 -010-110 0101 1-00-1-0 0100
-1101--0 0100 --11-101 0100 -101-11 0100
1-0--011 0011 -0111-0- 0011 1--1-100 0011
-1001--1 0011 1-1-1-1 0100 -1-11--1 0100
1--11--0 0001 1--01--1 0001 0--01-1- 0001
i-1-0--0 0001 0--10--0 0001 0--00--i 0001
---10-10 0001 1-1--I0- 0011 -10-1-1- 0011
0-10---1 0001 ---0--Ii 0001 --i --- 0 0001
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Table A.4

Mod 11 Adder

. 8 .o 4 .p 79

inputs x outputs y inputs x outputs y inputs x outputs y
76543210 3210 76543210 3210 76543210 3210

1-0000-0 1000 00-01-00 1000 --000001 0001
0001--00 0001 0-0-0010 0010 0-10000- 0010
000--10 0110 0010-10- 0110 00001--- 1000
1---0000 1000 -100-1-0 1000 001-001- 0100
0000---l 0001 -1-0-100 1000 0000-1-- 0100
---10000 0001 00---i00 0100 -11100-1 1000
0-000-01 0001 0-010-00 0001 -01-0-00 0010
0000--i- 0010 00-1-111 1000 -101-010 0100
-110-001 0100 -01100-1 0100 00-1-011 0100
-110-110 0001 -100001- 0110 -11-0000 0110
1-0-000- 1000 000-1-0- 1000 -10-000- 0100
000--0- 0100 0--000-1 0001 00-00--I 0001
0--100-0 0001 00-10--0 0001 -11-001- 1000
001--11- 1000 -1011-0- 0010 -1-1-011 1000
-11-1-1- 0100 1-0--i01 0010 -011-1-1 1000
-1-11--1 0001 1-1--11- 0100 1--1-1-1 0001
-11--111 0010 -111-11- 0010 -1-1-111 0001
-111-1-1 0001 1-001--0 0101 1-1-1-00 0101
-1-01--0 0001 -10--I0- 1000 1--0-1-0 0001
-10-1--1 0010 1--li-i- 1000 1-1-1--1 1000
1-1-1-1- 1000 1--1-10- 0010 --00--10 0010
--10--00 0010 -1111--- 0100 1-11--1 0001
1 ---- 111 0100 1--1-11- 0100 --101-1- 0001
1-1--i-i 0100 1-1---10 0001 --01--01 0010
-- 111-1- 0010 1-1---11 0010 -- 111--i 0001
1--1--11 0001 1-0-1--1 0110 1--11-0- 0110
--11--l 0010
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Table A.5

Quantizer

.1 10 .0 1 .p 32

inputs x y inputs x y inputs x y
9876543210 0 9876543210 0 9876543210 0
------ --------- --------------

0---0-1111 1 0-0-0-1-11 1 0--00-ii-i 1
0-0-0-1-11 1 0-000-1--1 1 i-1-0-0000 1
00--0--i 1 1-11-0-00- 1 1-1-10-00- 11-11-0-0-0 1 0--0--iii- 1 0-00--i-I- 1

1 ---- 00-00 1 1--i-00-0- 1 -00-0-0011 1
-0100-01-1 1 1 --- 100-0- 1 -0000-00-1 1
I--i-00-0 1 1-1100--- 1 --0--1-1-- 1
0-0 --- 11l-- 1 -010-011- 1 -000--001- 1
000 ---- i-- 1 1-1--00--- 1 0O-- -- 1

-11-0-1 O .. i--1111 -00-ii--00-0 1 -11-1-000- 1 -11i--- 0000 1
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Table A. 6

Mod 23 Minimum Computer

. 10 .o .p 26

inputs x y inputs x y inputs x y
9876543210 0 9876543210 0 9876543210 0
------ - --------- ----------- -

-- 111-0--- 1 -0--l--1- 1 0--111 ---- 1
0---1-110- 1 --- 0---11- 1 1-0-0---0- 1
-- 0-1-1-1- 1 1--l--01-- 1 -0--01--0- 1
0---0-1-1- 1 -- 0-1-010- 1 -i--00--0- 1
-1--10--1- -1 -- 1--i-... 1 -0-110--0- 1
o--io--o--- 1 i-i------ 1 --0-0-0-1- 1
--- 01--00- 1 1--0-00--- 1 0-0---1--- 1
---00--i-- 1 ---1---01- 1 001---0--- 1
... 1-. .0 1 ---- 0 ---- 1 1
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Section 4 discussed PLA implementation of the reduced functions y

of tables A.1 through A.6. Considerable reduction in the hardware

is possible if random logic is used instead. To illustrate, figure

A.1 shows a mod 23 adder layout obtained with special purpose CAD

tools that were developed by MITRE's integrated electronics project

staff. The silicon area required by the adder is 228X x 133k which

is more than 20 times smaller than the area of the PLA given in

section 4. Similar reduction can probably be obtained with the

other DTW cell functions, so the estimate of the area of one cell 6=

given in section 4 is quite pessimistic.

-228X

h+ a4  b3 a3  b2 a2  bI al b0 a0

133k

94 s3 s2  s SO "

Figure A.I. Mod 23 Adder
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Table A. 7 shows a two-input gate count of a combinational logic

(sum-of -products) implementation of the six expressions.

Table A. 7

Number of Two-Input Gates Required by a Sum-of-Products
Implementation of the DTW Cell Functions of Table 4.1

Function Inverters ANDs ORs

Mod 23 Subtractor-Squarer 10 2945 510
Mod 23 Adder 10 1360 248
Mod 11 Subtractor-Squarer 8 437 105
Mod 11Adder 8 385 86
Quantizer 10 96 25
Mod 23 Minimum Computer 10 171 31

Total 5394 1005
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